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Abstract
Time-delay systems model widespread phenomena, ranging from life sciences and
economics to natural sciences and engineering. We focus on linear time-delay systems
of time-invariant and periodic type, whose stability properties can be inferred from
the spectrum of in�nite-dimensional operators. Indeed, the asymptotic growth or
decay rate of the solutions towards zero can be determined by the spectral radius
of the monodromy operator, or the spectral abscissa of the in�nitesimal generator
associated with the time-invariant time-delay system. The optimization of these
stability measures with respect to system parameters permits to stabilize an unstable
system and/or to increase the decay rate of the solutions towards zero.

This thesis aims to develop and analyze accurate and reliable numerical methods
for the stability assessment and stabilization of linear time-delay systems, validating
the e�ciency of the novel methodologies on numerical examples and engineering
applications. The main contributions follow two research directions. First, we
consider linear time-invariant time-delay systems, whose parameters are a�ected by
uncertainties, modeled by a random vector. Second, we present stability assessment
and stabilization methods for linear periodic time-delay systems, where the period
and delays are commensurable.

The spectral abscissa of a time-invariant time-delay system, whose uncertainties are
modeled by a random vector, is a random variable, and admits a polynomial chaos
expansion. Other than explaining the parallelism between the polynomial chaos
and the polynomial approximation theories, we systematically demonstrate that the
lack of smoothness properties of the spectral abscissa heavily a�ects polynomial
approximation methods. The insights on the behavior of the spectral abscissa, which
can be generalized to the behavior of the spectral radius of periodic time-delay systems,
also play a role in the development of novel stability optimization methods.

The novel stability optimization method, handling the uncertainty, considers as
objective function the mean of the spectral abscissa with a variance penalty. Compared
to the optimization of the spectral abscissa for the nominal model, the novel approach
shows better robustness properties, and, in contrast to worst-case analysis, furnishes
more realistic results, exploiting a probabilistic description of the uncertainties.

Moreover, we develop novel stability assessment and stabilization methods for time-
delay systems, whose delays and period are commensurate numbers. For these
systems, the spectral radius can be not only inferred from the monodromy operator
but also from the eigenvalues of a characteristic matrix, whose evaluation involves
solving an initial value problem. The exploitation of this characteristic matrix provides
three main contributions. Firstly, we propose a novel two-stage approach for the
stability assessment, which iteratively re�nes the accuracy of the spectral radius
obtained by the discretization of the monodromy operator. Secondly, we prove a
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characterization of left eigenvectors of the characteristic matrix in terms of right
eigenfunctions of the monodromy operator associated with a dual periodic time-delay
system. As a third contribution, we derive from the characteristic matrix a formula to
compute the derivatives of the spectral radius with respect to parameters, which is
adopted in a spectrum-based stabilization method.



Samenvatting
Tijdsvertragingssystemen model wijdverspreide fenomenen, variërend van life
sciences en economie tot natuurwetenschappen en engineering. We richten ons
op lineaire tijdvertragingssystemen van het tijdinvariante en periodieke type,
waarvan de stabiliteitseigenschappen kunnen worden afgeleid uit het spectrum van
oneindig-dimensionale operatoren. Inderdaad, de asymptotische stijging of daling
van de oplossingen dichtbij nul kan worden bepaald door de spectrale straal van
de monodromie-operator, of de spectrale abscis van de in�nitesimale generator
geassocieerd met het tijdinvariante tijdvertragingssysteem. De optimalisatie van deze
stabiliteitsmaatregelen met betrekking tot systeemparameters maakt het mogelijk om
een onstabiel systeem te stabiliseren en/of de vervalsnelheid van de oplossingen naar
nul te verhogen.

Dit proefschrift beoogt de ontwikkeling en analyse van nauwkeurige en be-
trouwbare numerieke methoden voor de stabiliteitsbeoordeling en stabilisatie van
lineaire tijdvertragingssystemen, waarbij de e�ciëntie van de nieuwe methoden
met numerieke voorbeelden en technische toepassingen wordt gevalideerd. De
belangrijkste bijdragen volgen twee onderzoeksrichtingen. Eerst beschouwen we
lineaire tijdinvariante tijdvertragingssystemen, waarvan de parameters worden
beïnvloed door onzekerheden, gemodelleerd door een willekeurige vector. Ten
tweede presenteren we stabiliteitsbeoordeling en stabilisatiemethoden voor lineaire
periodieke tijdvertragingssystemen, waarbij de periode en vertragingen evenredig
zijn.

De spectrale abscis van een tijdinvariant tijdvertragingssysteem, waarvan de onzeker-
heden worden gemodelleerd door een willekeurige vector, is een willekeurige variabele
en laat een polynomiale chaosbenadering toe. Anders dan het verklaren van het
parallellisme tussen de polynomiale chaos en de polynomiale benaderingstheorieën,
tonen we systematisch aan dat het gebrek aan gladheidseigenschappen van de
spectrale abscis de polynoombenaderingsmethoden sterk beïnvloedt. De inzichten
over het gedrag van de spectrale abscis, die kunnen worden gegeneraliseerd naar het
gedrag van de spectrale straal van periodieke tijdvertragingssystemen, spelen ook
een rol bij de ontwikkeling van nieuwe methoden voor stabiliteitsoptimalisatie.

De nieuwe stabiliteitsoptimalisatiemethode, die omgaat met de onzekerheid, be-
schouwt als objectieve functie het gemiddelde van de spectrale abscis met een term
die het hebben van een hoge variantie afstraft. Vergeleken met de optimalisatie van
de spectrale abscis voor het nominale model, vertoont de nieuwe benadering betere
robuustheidseigenschappen en levert, in tegenstelling tot de worst-case-analyse,
realistischere resultaten, waarbij gebruik wordt gemaakt van een probabilistische
beschrijving van de onzekerheden.
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Bovendien ontwikkelen we nieuwe stabiliteitsbeoordelings en stabilisatiemethoden
voor tijdvertragingssystemen, waarvan de vertragingen en periode evenredig zijn.
Voor deze systemen kan de spectrale straal niet alleen worden afgeleid uit de
monodromie-operator, maar ook uit de eigenwaarden van een karakteristieke matrix,
waarvan de evaluatie het oplossen van een beginwaardeprobleem inhoudt. De
exploitatie van deze karakteristieke matrix levert drie belangrijke bijdragen. Ten
eerste stellen we een nieuwe tweetrapsbenadering voor de stabiliteitsbeoordeling voor,
die iteratief de nauwkeurigheid van de spectrale straal ver�jnt die wordt verkregen
door de discretisatie van de monodromie-operator. Ten tweede bewijzen we een
karakterisering van linker eigenvectoren van de karakteristieke matrix in termen
van rechter eigenfuncties van de monodromie-operator geassocieerd met een dubbel
periodiek tijdvertragingssysteem. Als derde bijdrage leiden we uit de karakteristieke
matrix een formule af om de afgeleiden van de spectrale straal met betrekking
tot parameters te berekenen, die wordt gebruikt in een op spectrum gebaseerde
stabilisatiemethode.



Notations

Related to time-delay system
r System dimension
h Number of delays
τj j-th delay
T Period
ω Uncertain parameters, realization of the random vector ω
K Controller parameters

Sets
N Natural numbers (zero included)
R Real numbers
R+ Non-negative real numbers
C Complex numbers
X Time-delay system state space

Inner products and norms
|·| Absolute value
〈·, ·〉 Euclidean inner product on a vector space
‖ · ‖2 2-norm, or Euclidean norm, on a vector space
‖ · ‖1 1-norm on a vector space
‖ · ‖∞ In�nity norm on a vector space
〈·, ·〉w w-inner product
‖ · ‖w w-norm
‖ · ‖s Supremum norm, also known as L∞ norm

Letter-based symbols
µ̄ Conjugate of a complex scalar µ
vT, AT Transpose of a vector v and of a matrix A
v∗, A∗ Conjugate transpose of a vector v and of a matrix A
9x(t) Derivative of x with respect to time
:x(t) Second derivative of x with respect to time
α ′(ω) Derivative of the function α at the point ω
α (k )(ω) k-th derivative of the function α at the point ω
Ǎ, Ň Transposed characteristic matrices
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Operators, spectral quantities and stability measures
T(t, t0) Solution operator, with t ≥ 0 and t0 ∈ R
U Monodromy operator
A In�nitesimal generator of the solution operators {T (t, 0)}t ≥0
σ (·) Spectrum
µ Floquet multipliers
λ Eigenvalue/characteristic roots
ρ Spectral radius of the monodromy operator, stability measure
α Spectral abscissa of the in�nitesimal generator, stability measure
A Characteristic matrix of autonomous time-delay system
N Characteristic matrix of periodic time-delay system

Related to the probabilistic framework
ω Random vector
U(a,b) Random variable uniformly distributed in the real interval [a,b]
D Stochastic dimension
w Probability density function of the random vector ω

(In chapter 2, denotes the polynomial basis weighting function)
Ω Support of the random vector ω

(In chapter 2, denotes the support of the weighting function w)
E(ω) Expected value of the random vector ω
V(ω) Variance of the random vector ω
κ Trade-o� parameter quantifying the variance penalty

Special constants
i Imaginary unit
e Euler’s number
π Archimedes’ constant
In Identity matrix of size n × n
0 All-zero matrix of appropriate size
0n×m All-zero matrix of size n ×m

Other
⊗ Kronecker product
Re(·) Real part
Im(·) Imaginary part
dνe Integer obtained by rounding ν ∈ R towards in�nity
bνc Integer obtained by rounding ν ∈ R towards minus in�nity
k mod N Remainder after division of the integer k by N ∈ N \ {0}
O Landau notation
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1
Introduction

The PhD thesis starts presenting to the non-specialists the main motivation to study spectrum-
based stability and stabilization for time-delay systems. Then, the preliminaries introduce the
results and numerical methods on the stability of linear time-delay systems of periodic and time-
invariant type, providing the basis for the development of the following sections and chapters.
Based on these preliminaries, the main contributions of this thesis are brie�y summarized,
and compared with the state-of-the-art. This chapter ends schematically describing the overall
structure of the thesis.

The experience helps us to �nd a long-lasting equilibrium, stable against the
uncertainty that we will face in the future. In a similar way, this thesis analyzes
systems, whose present action depends on past events; and aims at improving the
stability conditions of such systems.

Systems, for which the future is not only determined by the present but also by
the past, model widespread phenomena, where a delay occurs between the cause
and its e�ect. These time-delay systems provide a reliable mathematical description
of maturation periods in life sciences and in economics, or the non-instantaneous
transfer of material, energy and information in chemistry, physics, engineering,
and communication [20, 81]. Even washing our hands can be modeled by a time-
delay system; indeed, when we adjust the faucet, the water temperature does not
instantaneously change.

We consider time-delay systems for which the stability properties are characterized by
whether every solution will remain close to zero or be repelled away. In this context,
the stability optimization drives every solution to decay to zero as fast as possible.
The stability assessment and optimization methods for these time-delay systems are
fundamental for the construction of reliable machines, or to quantify parameters in
mathematical models. However, analyzing the behavior of every solution is infeasible,
and therefore, we describe all the possible solutions by operators, so that the stability
conditions are determined by intrinsic quantities, the eigenvalues, of these operators.

More precisely, we focus on zero-solution stability of linear time-delay systems of
time-invariant and periodic type, which respectively determine the stability of an
equilibrium and periodic solution for a nonlinear time-invariant delay system, by
the principle of linearized stability. In a linear time-delay system, the asymptotic
growth or decay rate of the solutions towards zero depends on eigenvalues of an
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in�nite-dimensional operator. Hence, the system stability can be inferred from the
location of these eigenvalues, and their relocation might provide a faster convergence
to the zero-solution.

This thesis aims to develop accurate and reliable numerical methods for the
stability assessment and stabilization of linear time-delay systems, testing these
novel approaches on numerical examples and engineering applications. To this
end, two main research directions are followed. First, disturbances, a�ecting the
parameters of time-delay systems, are considered and exploited by novel stability
and stabilization methods in a probabilistic framework, assuming that the time-
delay system uncertainties are described by random variables. Second, we present
novel computational methods for the stability analysis and optimization of linear
time-periodic delay systems, which permit to iteratively re�ne the accuracy of the
eigenvalues obtained by the discretization of in�nite-dimensional operators.

This chapter is organized as follows. First, section 1.1 brie�y reviews the stability
properties for time-delay systems, setting the necessary basis for the development
of the next chapters. Next, section 1.2 summarizes the contributions, reviewing the
state of the art. Finally, we give an overview of the thesis in section 1.3.

1.1 Preliminaries

This section provides a brief overview on the stability assessment and stability
optimization methods for linear time-delay system, introducing the main de�nitions,
properties and notations. We start analyzing the stability properties of the general
periodic linear time-delay systems in section 1.1.1. Then, we analyze the special
case of time-invariant linear time-delay systems in section 1.1.2, describing a well-
established method to compute its associated stability measure in section 1.1.3. Hence,
section 1.1.4 analyzes the stability optimization approach, considering time-invariant
delay systems. The stability assessment and optimization for the general periodic
linear time-delay system represents a main contribution of this work, as discussed in
section 1.2.3 and chapter 4. For a more extensive treatise on the stability of time-delay
system we refer to the monographs [33, 59, 8], from which we heavily borrow.

1.1.1 Stability measure for linear periodic time-delay systems

Let us consider the following linear periodic time-delay system

9x(t) =
h∑
j=0

Aj (t)x(t − τj ), t ≥ t0 ∈ R, (1.1)
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where

• there are h + 1, h ∈ N, non-negatives delays, sorted, without loss of generality,
in increasing order 0 ≤ τ0 < . . . < τh ;

• x(t) ∈ Rr represents the state at time t ≥ t0 − τh ;

• for j = 1, . . . ,h, the system matrix Aj : R→ Rr×r , t 7→ Aj (t) is a continuous
and T -periodic function, with T ∈ R+ \ {0}.

If all system matrices are constant, Aj (t) ≡ Aj , being periodic for any period T > 0,
then the time-delay system is called autonomous or time-invariant.

Since the present is in�uenced by the past events, x(t − τj ) with τj > 0, the solution
of (1.1) cannot be speci�ed by a single event at the starting time x(t0), yet a piece of
trajectory over a time-interval of length τh is needed. More precisely, for any initial
function φ ∈ X , where X is the set of continuous functions from [−τh, 0] to Cr , the
initial value problem{

9x(t) = ∑h
j=0 Aj (t)x(t − τj ), t ∈ [t0,∞),

x(t) = φ(t − t0), t ∈ [t0 − τh, t0],
(1.2)

admits a unique forward solution, denoted by x(t ; t0,φ). In order to retrieve the
solution at every time t ≥ t0, we need to know the solution in the previous interval
of length τh , this state is denoted by xt (·; t0,φ) ∈ X and is de�ned by

xt (θ ; t0,φ) = x(t + θ ; t0,φ), θ ∈ [−τh, 0].

A linear system generally presents only one equilibrium point, the zero-solution
x ≡ 0. We focus on the stability properties of (1.1), analyzing the convergence of the
solutions to the zero-solution. In order to quantify the distance of a solution from the
zero-solution, we equip the state space X with the supremum norm, also known as
the L∞ norm,

‖φ‖s = sup
θ ∈[−τh ,0]

‖φ(θ )‖2, φ ∈ X ,

where ‖ · ‖2 is the Euclidean vector norm.

The zero-solution is stable if and only if for any ε > 0 there exists δ > 0 such that
‖xt (·, t0;φ)‖s < ε for all t ≥ t0 and for any φ ∈ X with ‖φ‖s ≤ δ . In addition, if
limt→∞ ‖xt (·; t0,φ)‖s = 0 also holds, then the zero-solution is asymptotically stable. If
a system is not stable, then it is called unstable. For reasons of conciseness, we often
refer the (asymptotic) stability and instability directly to the system (1.1) instead of
the more precise formulation, which refers to the zero-solution.

The stability of system (1.1) can be inferred from the spectrum of in�nite-dimensional
operators linearly mapping the in�nite-dimensional state space X into itself. By the
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existence and uniqueness of the forward solution, we de�ne the solution operator,
T(t, t0), which translates the solution along its trajectory, associating the state at time
t0 ∈ R to the state at time t + t0 with t ∈ R+; in formula T(t, t0) : X → X such that

T(t, t0)φ = xt+t0 (·; t0,φ), φ ∈ X .

Since the solution operator associates the solution at time t0 to the one at time
t + t0, its spectrum suggests the decay or growth rate of the solution between these
two instances. By the system matrices periodicity T , it is natural to consider the
solution operators T(T , t0) describing the variation of the solutions after a period.
The spectrum of T(T , t0), denoted by σ (T (T , t0)), is an at most countable compact
set in the complex plane with zero as only possible accumulation point; in other
words, it admits a �nite number of elements outside any ball around the origin. This
spectrum is independent of the starting time t0 ∈ R, and all its non-zero elements are
eigenvalues. Operator T(T , 0) is called monodromy operator and is denoted by U ;
therefore, the monodromy operator is de�ned as U : X → X such that for any φ ∈ X

U φ = xT (·; 0,φ).
The non-zero eigenvalues of the monodromy operator are called Floquet multipliers.
By de�nition, they satisfy the in�nite-dimensional linear eigenvalue problem

U φ = µφ, µ ∈ C \ {0}, φ ∈ X \ {0}. (1.3)

The Floquet multipliers determine the asymptotic growth/decay of solution of (1.2)
in the time-interval of length T . The largest modulus of the Floquet multipliers, the
so-called spectral radius

ρ = max
µ ∈σ (U )

|µ |,

represents a stability measure for the system (1.1), as stated in the following theorem.

Proposition 1.1 The zero-solution of (1.1) is asymptotically stable if and only if all
the Floquet multipliers are strictly contained in the complex unit circle, or

ρ < 1.

The zero-solution is unstable if there is at least one Floquet multiplier with modulus
larger than 1, i.e. ρ > 1.

In the linear autonomous time-delay system, we have an uncountable number of
stability conditions induced by Proposition 1.1. Indeed, since constant system matrices
can be interpreted as periodic for any periodT ∈ R+\{0}, then we can de�ne in�nitely
many monodromy operators, whose spectral radius permits to infer the stability
properties of the autonomous system. However, the autonomous case admits an
additional stability measure whose computation and optimization are well-established,
as described in the following sections.
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1.1.2 Another stability measure for linear autonomous time-delay systems

Since the system matrices do not depend on time, the initial time t0 can be set to zero
without loss of generality. Hence, the autonomous time-delay system is

9x(t) =
h∑
j=0

Ajx(t − τj ), t ∈ R+. (1.4)

In a similar way, the solution operators depend only on a single parameter, T(t, 0).
The family of solution operators {T (t, 0)}t ∈R+ permits to reformulate system (1.4)
into an in�nite-dimensional ordinary di�erential equation over the state space X .
Indeed, taking the right-hand derivative of {T (t, 0)}t ∈R+ in t = 0, we get

d
dt xt = lim

δ→0+
xt+δ − xt

δ
= lim
δ→0+

T (δ , 0) −T (0, 0)
δ

xt = A xt , (1.5)

where xt = xt (·; 0,φ) for any φ ∈ X and A is the in�nitesimal generator of
{T (t, 0)}t ∈R+ , characterized as the operator A : D(A ) ⊂ X → X such that

{
D(A ) =

{
φ ∈ X : 9φ ∈ X and 9φ(0) = ∑h

j=0 Ajφ(−τj )
}
,

A φ = 9φ.
(1.6)

Since autonomous delay system can be seen as linear in�nite-dimensional ordinary
di�erential equations, the following example brie�y reviews the terminology and
the results shown until now in the simpler case of linear �nite-dimensional ordinary
di�erential equations.

Example 1.1. Let us take a step back, and consider an ordinary di�erential equation

9x(t) = Ax(t), t ∈ R, x(t) ∈ Rr and A ∈ Rr×r . (1.7)

There exists a unique solution of system (1.7), for any given state at time t0 = 0,
x(0) ∈ Rr ; this solution is de�ned forward and also backward in time, and admits an
explicit expression

x(t) = exp(At)x(0), for any t ∈ R.
Therefore, the solution operator T(t, 0), translating a solution from the state at time
0 to the time t ∈ R, is the matrix exponential of At ,

T(t, 0) = exp(At). (1.8)

The in�nitesimal generator of {T (t, 0)}t is the matrix A, which de�nes system (1.7),

d exp(At)
dt

���
t=0
= A.
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If λ is an eigenvalue ofA, then eλt is an eigenvalue ofT(t, 0), by (1.8). Since system (1.7)
is asymptotically stable if and only if all the eigenvalues of A are in the complex
left half-plane, we can retrieve the results of Proposition 1.1. Indeed, system (1.7)
is asymptotically stable if and only if all the eigenvalues of T(t, 0) for t > 0 are
contained in the complex unit circle.

Analogously to Example 1.1, the spectra of the solution operator T(t, 0) and of the
in�nitesimal generator A are related by

σ (T (t, 0)) \ {0} = exp(tσ (A )). (1.9)

Therefore, the spectrum of A is at most countable compact set in the complex
plane with minus in�nity as only possible accumulation point; in other words, it
admits �nitely many elements in any right half-plane. All the elements of σ (A ) are
eigenvalues, and they satisfy the following in�nite-dimensional eigenvalue problem

A φ = λφ, λ ∈ C, φ ∈ X \ {0}. (1.10)

Let us recall that every solution operator T(t, 0) for t > 0 can be interpreted as
monodromy operator for the autonomous system (1.4). Therefore, by the previous
Proposition 1.1 and the relation on spectra (1.9), the autonomous systems (1.4) admit
another stability measure, the real part of the rightmost eigenvalues of the in�nitesimal
generator, the so-called spectral abscissa

α = max
λ∈σ (A )

Re(λ).

Proposition 1.2 The zero-solution of (1.4) is asymptotically stable if and only if all
the eigenvalues of the in�nitesimal generator are contained in the left half-plane or
equivalently if and only if

α < 0.
The zero-solution is unstable if there is an eigenvalue of the in�nitesimal generator with
positive real part, α > 0.

Since the in�nitesimal generator permits to rewrite system (1.4) into an in�nite-
dimensional ordinary di�erential equations (1.5), its eigenvalues express the asymp-
totic exponential growth/decay rate of the solutions of (1.4) towards zero, similarly
to the �nite-dimensional case presented in Example 1.1.

Moreover, substituting into (1.4) an exponential solution x(t) = eλtv , we get the
following �nite-dimensional nonlinear eigenvalue problem(

λIr −
h∑
j=0

Aje−λτj
)
v = 0, λ ∈ C, v ∈ Cr \ {0},

which is equivalent to the in�nite-dimensional linear eigenvalue problem (1.10) as
stated in the following theorem.
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Theorem 1.3 Let λ̂ ∈ C. If the pair (λ̂, φ̂) is a solution of the in�nite-dimensional linear
eigenvalue problem

A φ = λφ, λ ∈ C, φ ∈ X \ {0}, (1.11)

then (λ̂, v̂) is a solution of the �nite-dimensional nonlinear eigenvalue problem
(
λIr −

h∑
j=0

Aje−λτj
)
v = 0, λ ∈ C, v ∈ Cr \ {0}, (1.12)

where v̂ = φ̂(0).
Conversely if the pair (λ̂, v̂) is a solution of (1.12) then (λ̂, φ̂) is a solution of (1.11),
where φ̂(θ ) = eλ̂θ v̂ for θ ∈ [−τh, 0].

The eigenvalues of the nonlinear eigenvalue problem (1.12) are also called charac-
teristic roots, since they solve the following scalar equation, named characteristic
equation

det(A(λ)) = 0, (1.13)

where A(λ) denotes the characteristic matrix de�ned as

A(λ) := λIr −
h∑
j=0

Aje−λτj .

Before analyzing how to compute and minimize the spectral abscissa of the
in�nitesimal generator, the next example illustrates the spectrum-based stability
properties of a simple scalar time-delay system: the hot shower problem a didactic
example often encountered in the literature [52, 20, 38].

Example 1.2. Let us consider the simpli�ed model of a human adjusting the water
temperature by swinging the faucet handle,

9x(t) = −Kx(t − 1), (1.14)

where x(t) denotes the di�erence between the water temperature at time t and the
desired one, and −Kx(t − 1) represents the reaction of the person in adjusting the
faucet, occurring with a delay τ = 1 s, due to the propagation of the water in the
pipes.

A person, reacting forcefully to a wrong temperature, is modeled by a large value of
K . In this case, the temperature may oscillate with increasing amplitude, leading to
repeated burns or frostbite until the faucet breaks. For example, forK = 2 system (1.14)
is unstable due to a positive spectral abscissa of the in�nitesimal generator, which
present eigenvalues in the right half-plane, Figure 1.1a; or equivalently due to a
spectral radius of the solution operator T(1, 0) larger than one, since there are Floquet
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multipliers outside the complex unit disc, Figure 1.1b. If the initial condition of the
water temperature is hotter 1 ◦C than the desired one, then the temperature oscillates
with growing amplitude, where the asymptotic exponential growth rate is determined
by the spectral abscissa, as illustrated in Figure 1.1c.

-4 -3 -1 0.17

-50

50

Re(σ (A ))

Im(σ (A ))

(a) In�nitesimal generator spectrum.

-1 -0.1 1

-1
−1.2

1.2
1

Re(σ (T(1, 0)))

Im(σ (T(1, 0)))

(b) Solution operator spectrum.

10 15 20

-30

-20

-10

1

10

20

30
etα

−etα

x (t ) t [s]

[◦C]

(c) System solution with initial state φ ≡ 1.

Figure 1.1 Analysis of the hot shower problem (1.14) with reaction parameter K = 2.

A more gentle person, with a small value of K , can �nd the desired temperature
to wash its hands. However, if the time required to reach a temperature close to
the desired one is long, then the water bill will be costly. For example, for K = 1
the stability of system (1.14) can be inferred from the negative value of the spectral
abscissa, Proposition 1.2, or by the spectral radius of the solution operator T(1, 0)
smaller than one, Proposition 1.1. Indeed, all the eigenvalues are contained in the left
half-plane and all the Floquet multipliers are in the complex unit circle, as respectively
depicted in Figures 1.2b and 1.2a. For an initial condition x(t) ≡ 1 with t ∈ [−1, 0]
the settling time of the solution to reach the desired water temperature is long as
illustrated in Figure 1.2c.

1.1.3 Spectrum based stability assessment for autonomous delay systems

The dual interpretation of the eigenvalues in Theorem 1.3, either as in�nite-
dimensional and linear or �nite-dimensional and nonlinear, lies at the basis of
e�cient stability assessment methods as [51] and the package DDE-BIFTOOL [78]. In
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(b) Solution operator spectrum.
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(c) System solution with initial state φ ≡ 1.

Figure 1.2 Analysis of the hot shower problem (1.14) with reaction parameter K = 1.

these methods, a spectral discretization of the in�nite-dimensional linear eigenvalue
problem (1.11) furnishes a global view of the in�nitesimal generator spectrum,
permitting to detect a guess of the rightmost eigenvalues. Then, the accuracy of these
guesses is re�ned by Newton’s method based on the �nite-dimensional nonlinear
eigenvalue problem (1.12). Hence the stability assessment, relying on the spectral
abscissa, considers only the real part of the rightmost eigenvalue.

Remark 1.1. Other methodologies permit to compute the characteristic roots of
linear autonomous time-delay systems. For example, the advanced quasi-polynomial
mapping [97] relies on splitting the real and imaginary parts of the characteristic
equation (1.13) into two surfaces, such that the characteristic roots are determined
by the intersections between these two surfaces. The interested reader is referred to
[38, Chapter 2], for an overview on numerical methods to compute the characteristic
roots for an autonomous linear time-delay system.

We brie�y review the computation of the characteristic roots following the approach
in [59, Section 2.2]. We �rst describe the discretization of the in�nite-dimensional
eigenvalue problem into a �nite-dimensional linear eigenproblem, which presents
the same underlying ideas of [8, Chapter 5]. Then, we present a local method to
compute the characteristic roots by the �nite-dimensional nonlinear eigenvalue
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problem. Finally, we sketch a two-stage approach which combines the previous
results.

Discretization of the in�nite-dimensional linear eigenvalue problem

We derive a �nite-dimensional linear eigenvalue problem, whose eigenvalues
approximate some elements of the in�nitesimal generator spectrum. Given a
positive integer M , we approximate any element of the state space φ ∈ X by M-
degree polynomial, φM . Given a polynomial basis {pi }i ∈N in the interval [−τh, 0],
the polynomial approximation is uniquely determined by the coe�cients c =
(cT

0 . . . c
T
M )T ∈ (Cr )M+1 such that

φM (t) =
M∑
i=0

cipi (t), t ∈ [−τh, 0]. (1.15)

We determine the discretization of the in�nite-dimensional linear eigenvalue problem,
A φ = λφ with φ ∈ X \ {0} and λ ∈ C, by the characterization (1.6) of the in�nitesimal
generator, A φ = 9φ, with 9φ(0) = ∑h

j=0 Ajφ(−τj ). Indeed, we impose the collocation
requirements in 0

λφM (0) =
h∑
j=0

AjφM
(−τj ) . (1.16)

and in M distinct points {ξm}Mm=1 over the interval [−τh, 0)
λφM (ξm) = 9φM (ξm), m = 1, . . . ,M . (1.17)

Hence, the discretization of the in�nite-dimensional linear eigenvalue problem (1.11)
is expressed in terms of the coe�cients c ∈ Cr (M+1) of the M-degree polynomial, φM
by a matrix formulation of conditions (1.16)-(1.17).

If we express the polynomial φM in the Chebyshev basis

φM (t) =
M∑
i=0

ciTi

(
2 t

τh
+ 1

)
, t ∈ [−τh, 0],

with Ti the i-degree Chebyshev polynomial of the �rst kind, then its derivative is

9φM (t) =
M∑
i=0

ci
2
τh

iUi−1

(
2 t

τh
+ 1

)
, t ∈ [−τh, 0],

where Ui is the i-degree Chebyshev polynomial of the second kind. If {ζm}Mm=1 are
the normalized grid-points, scaled and shifted to the interval [−1, 1],

ζm = 2ξm
τh
+ 1,
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then the conditions (1.16)-(1.17) discretize the in�nite-dimensional eigenvalue
problem into a generalized matrix eigenvalue problem

(
λ

(
T0(1)T1(1) · · ·TM−1(1) TM (1)

T TM

)
⊗ Ir −

(
R0 R1 · · · RM
0 U ⊗ Ir

)) ©«
c1
...
cM

ª®®¬
= 0, (1.18)

where ⊗ denotes the Kronecker product, and

T =
©«
T0(ζ1) T1(ζ1) · · · TM−1(ζ1)
...

...
...

T0(ζM ) T1(ζM ) · · · TM−1(ζM )

ª®®¬
, TM =

©«
TM (ζ1)
...

TM (ζM )

ª®®¬
,

U =
2
τh

©«
1U0(ζ1) 2U1(ζ1) · · · MUM−1(ζ1)
...

...
...

1U0(ζM ) 2U1(ζM ) · · · MUM−1(ζM )

ª®®¬
,

Ri =
h∑
j=0

AjTi

(
2
−τj
τh
+ 1

)
, i = 0, . . . ,M .

The last rM rows of (1.18), corresponding to the conditions (1.17), can be simpli�ed
increasing the zero-elements, also known as sparsity, of the eigenvalue problem
matrices. Indeed, if we rewrite the Chebyshev polynomials of the �rst kind in terms
of the second kind

T1(t) = 1
2U1(t), Ti (t) = 1

2 (Ui (t) −Ui−2(t)) , i ≥ 2,

and we choose the collocation points {ζm}Mm=1 as zeros of UM ,

ζm = −cos πm

M + 1 , m = 1, . . . ,M,

then, the discretization (1.18) can be rewritten as a generalized eigenvalue problem
with an Hessenberg matrix and a block upper tridiagonal matrix(

λ

(
1 1 · · · 1

L

)
⊗ Ir −

(
R0 R1 · · · RM
0 IrM

))
c = 0, c ∈ Cr (M+1) \ {0}, (1.19)

with

L =
τh
4

©«

2 0 1
1/2 0 −1/2

1/3 0 −1/3
. . .

. . .
. . .

1/M−1 0 −1/M−1
1/M 0

ª®®®®®®®®¬
.



12 | Introduction

The convergence of the eigenvalues of (1.19) to the characteristic roots is fast. More
precisely, spectral accuracy, i.e. a convergence rate faster than O(M−k ) for every
k ∈ N, can be proven [8, Section 5.3], since the asymptotic distribution of the chosen
collocation points is asymptotically equal to the distribution of zeros of Chebyshev
polynomials scaled and shifted in [−τh, 0].

Newton’s method for nonlinear eigenvalue problem

The �nite-dimensional nonlinear eigenvalue problem (1.12) allows us to compute the
eigenpairs by applying an iterative solver for nonlinear equations to{

A(λ)v = 0,
w∗v = 1,

where the second equation, withw ∈ Cr \ {0} and ∗ denoting the conjugate transpose,
is a normalization constraint. If y = (vT λ)T, we can rewrite the system in the form
F (y) = 0. The application of Newton’s method leads us to the basic iteration

yi+1 = yi − J (yi )−1F (yi ), i ∈ N, (1.20)

where J (yi ) denotes the Jacobian of F (y) at y = yi , and is given by

J (yi ) =
(
A(λi ) dA(λi )

dλ vi
w∗ 0

)
=

(
λi Ir −

∑h
j=0 Aje−λiτj vi +

∑h
j=0 τjAje−λiτjvi

w∗ 0

)
.

Characteristic roots computation

The previous results lead us to the following algorithm for computing (part of) the
spectrum of the in�nitesimal generator.
Algorithm 1.1. Two-stage approach for computing characteristic roots.

1. Fix M and compute eigenvalues and eigenvectors of (1.19).
2. Correct the individual characteristic roots approximation, and extracted

eigenvector of (1.12), by applying Newton’s iteration (1.20).

In the initialization of the second stage, we extract an approximation of the right
eigenvector of the nonlinear eigenvalue problem (1.12). By (1.15), and the construction
of the �nite-dimensional linear eigenvalue problem (1.19), c ∈ Cr (M+1) parametrizes
the polynomial approximation corresponding to an eigenfunction of the in�nitesimal
generator A . Hence, by Theorem 1.3, the eigenvector approximation of (1.12) can be
extracted by an eigenvector c = (cT

0 · · · cT
M )T of (1.19),

v =
M∑
i=0

pi (0)ci .
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Remark 1.2. The number of collocation points M should not be too large, since the
eigenvalue computation of (1.19) has complexity O ((rM + r )3) by a direct method.
On the other hand, the eigenvalues of (1.19) should be in the basin of attraction of the
rightmost characteristic roots, so that the Newton’s method converges to the desired
solution. We refer to [59, Section 2.2.2] for an empirical method to determine the
number of collocation points M , so that the eigenvalues of (1.19) approximates the
characteristic roots of (1.4) in a given right half-plane.

Example 1.3. For the simple scalar system (1.14), the characteristic roots can be
analytically obtained by solving the characteristic equation (1.13),

λ + Ke−λ = 0 if and only if λ =Wk (−K),

where for any integer k ,Wk denotes the k-th branch of the LambertW function.
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(a) Convergence for discretization (1.19).
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(b) Convergence for Newton’s method.

Figure 1.3 Relative errors to evaluate the rightmost characteristic root with Algorithm 1.1, for
system (1.14) with K = 2. Newton’s method is initialized on the rightmost eigenvalues of (1.19),
considering M = 3 and M = 5 collocation points.

For K = 2 the rightmost characteristic root is λ = −0.3181 + 1.3372i and its
approximation by Algorithm 1.1 is illustrated in Figure 1.3. In Figure 1.3a, the
rightmost eigenvalue obtained by spectral collocation in the �rst stage of Algorithm 1.1
spectrally convergences to the rightmost characteristic root. In Figure 1.3b, few
Newton’s iteration permits to re�ne the accuracy up to machine precision of coarse
estimates of the rightmost characteristic root, obtained by spectral collocation.

For large dimension of the system matrices r � 1, solving the eigenvalue
problem (1.19) in the �rst stage of Algorithm 1.1 becomes computationally infeasible.
However, for this large scale problem speci�c software have been implemented, like
the in�nite Arnoldi’s method [41, 40] and Compact Rational Krylov method [92].
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1.1.4 Spectrum based stability optimization for autonomous delay systems

In this section, we consider time-delay system whose matrices are functions of system
or controller parameters K = (K1 · · · Kk ) ∈ Rk . More precisely, we consider the
following linear autonomous time-delay system

9x(t) =
h∑
j=0

Aj (K)x(t − τj ), t ∈ R+, (1.21)

under the assumption that Aj : Rk → Rr×r , K 7→ Aj (K) are smooth functions, for
j = 1, . . . ,h. Analogously, its associated characteristic matrix is denoted by A(λ; K).
However, to simplify the notations, we omit the parametric argument if it is not
essential for the discussion and in particular, we do not explicitly state K in the
in�nite-dimensional operators and their eigenvalues.

In this work, we focus on spectrum-based methods for stabilizing an unstable system
or for improving the decay rate of solutions to equilibrium based on minimizing the
stability measures as a function of controller parameter, similarly to [59, Chapter 7] for
autonomous systems, and [77, 63] for periodic systems. For periodic time-delay system
the (squared) spectral radius is minimized, shrinking the spectrum of the monodromy
operator towards zero. For autonomous time-delay systems (1.21), this optimization
problem can be recast as minimizing the spectral abscissa of the in�nitesimal generator,
shifting the characteristic roots to the left. Hence the stability optimization objective
functions are

min
K

ρ2, with ρ = max
µ ∈σ (U )

|µ |;

min
K

α, with α = max
λ∈σ (A )

Re(λ);

where the �rst one holds for periodic time-delay system, while the latter one only
holds for autonomous time-delay systems.

The stabilization of time-delay systems is a challenging problem, since it requires
shaping the spectrum of an in�nite-dimensional operator, minimizing a dominant
element of this in�nite (but countable) spectrum, by tuning a �nite number of degrees
of freedom, the controller parameters K. By Propositions 1.1-1.2, the stabilization
of an autonomous time-delay system can be equivalently stated in terms of spectral
radius and spectral abscissa. In particular, the minimization of the spectral radius
minimizes the largest in modulus Floquet multipliers, while the spectral abscissa
stability optimization minimizes the real part of the rightmost characteristic roots.

The objective function of the spectrum-based stability optimization problems is
in general non-convex, as illustrated in Figure 1.4, and is also non-smooth, as
analyzed, more in detail, in the next chapter 2. Except for degenerate examples, non-
di�erentiable points, due to multiple dominant elements of the spectrum (counted
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Figure 1.4 The stability measures for the time-delay system :x(t) = −Kx(t)+0.1Kx(t−1), varying
the parameter K ∈ [0, 300], present multiple local minima, therefore they are non-convex.

with multiplicity), occur on a set with measure zero in the parameter space. Therefore,
the previously de�ned objective functions are di�erentiable almost everywhere. Based
on these properties, the optimization is handled by the MATLAB code HANSO (Hybrid
Algorithm for Non-Smooth Optimization), described in [64].

HANSO is a two-phase process, based on BFGS algorithm with weak Wolfe condition
in the line search and on the gradient sampling method. Due to the non-convexity
of the problem, the BFGS phase is run from multiple starting points, often randomly
chosen, and with a rapid convergence leads to a reasonably good approximation of the
optimum [48]. Then, the gradient sampling, a generalization of the steepest descent
method for non-smooth problems, starts from the minimum point found by BFGS.
Since in this minimum the objective function is often non di�erentiable, the sampling
gradient samples a number of gradients in the near neighborhood of the iteration
point, hence considers as a descent direction the vector with the smallest norm in the
convex hull of these sampled gradients, and �nally a new iteration is found along this
direction with a standard line search [9, 93].

The underlying optimization process with HANSO only requires the evaluation of the
objective function and its gradient with respect to controller parameters, whenever
the objective function is di�erentiable. The objective function is di�erentiable and
hence its gradient exists, if the dominant element of the spectrum is isolated and
simple; in this case the gradient can be evaluated as1

∇K
(
ρ2) = 2 Re (µ̄D∇KµD) , and ∇Kα = Re(∇KλD),

where µD denotes the dominant Floquet multipliers, which are Floquet multipliers
with modulus equal to the spectral radius, ρ = |µD | and non-negative imaginary
part, Im(µD) ≥ 0; while λD denotes the dominant characteristic roots, which are

1 The gradient of the squared spectral radius follows from

∇K

(
|µ |2

)
= ∇K µ̄ µ = 2 (Re(µ∇Kµ) − Im(µ∇Kµ)) = 2 Re (µ̄∇Kµ) .
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characteristic roots with real part equal to the spectral abscissa α = Re(λD) and
non-negative imaginary part, Im(λD) ≥ 0.

Remark 1.3. Since we only consider real-valued time-delay systems, the non-real
characteristic roots and non-real Floquet multipliers always occurs in complex
conjugate pairs. For this reason, the dominant eigenvalues, i.e. the dominant Floquet
multipliers and the dominant characteristic roots, are chosen with non-negative
imaginary part.

Since the evaluation of the gradient of the objective function depends on the gradient
of dominant eigenvalues, ∇KλD and ∇KµD, the following proposition provides an
explicit expression for the eigenvalues derivatives of a general �nite-dimensional
eigenvalue problem Λ(λ; K)v = 0 with respect to parameters K.2

Proposition 1.4 Given K ∈ Rk , let λ be a simple eigenvalue of a �nite-dimensional
eigenproblem Λ(λ; K) with u, v ∈ Cr \ {0} its left and right eigenvectors, such that
Λ(λ; K)v = 0, and u∗Λ(λ; K) = 0. Then for each i ∈ {1, . . . ,k} we can express

∂λ(K)
∂Ki

=
−u∗ ∂Λ(λ;K)

∂Ki
v

u∗ ∂Λ(λ;K)
∂λ v

, for i = 1, . . . ,k .

Proof. To prove the proposition, we left-multiply by u∗ the partial derivative of
Λ(λ; K)v = 0 with respect to a parameter Ki , for every i = 1, . . . ,k . Refer to [76,
Lemma 2.7] for further details. �

An eigenvalue λ̂ of a �nite-dimensional nonlinear eigenvalue problem Λ(λ)v = 0 with
v ∈ Cr \ {0} is simple when its algebraic and geometric multiplicity are equal to 1,
where the algebraic multiplicity equals the number of times λ̂ appears as a root of the
characteristic equation det (Λ(λ)) = 0, while the geometric multiplicity is equal to the
null space dimension of Λ(λ̂).
Proposition 1.4 applied to the nonlinear eigenvalue problem (1.12), permits to compute
the gradient of a simple characteristic roots with respect to a parameters vector K.

Algorithm 1.2. Computing the gradient of a characteristic roots.

1. Compute the targeted characteristic root λ and its right eigenvector v by
Algorithm 1.1.

2. Compute u ∈ Cr \ {0}, the corresponding left eigenvector.

2 The proposition is stated considering a general �nite-dimensional eigenvalue problem Λ(λ; K)v = 0,
since it will not only be applied to the characteristic matrix eigenproblem A(λ; K)v = 0 but also to
other �nite-dimensional eigenvalue problems, in the upcoming sections 2.5 and 4.4.
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3. Compute the partial derivative of the Floquet multiplier with respect to the
elements of K by

∂λ

∂Ki
=

u∗
(∑h

j=0
∂Aj (K)
∂Ki

e−τjλ
)
v

u∗
(
Ir +

∑h
j=0 τjAj (K)e−τjλ

)
v
, for i = 1, . . . ,k .

For a small problem, the left eigenvector u ∈ Cr \ {0} can be computed as singular
vector corresponding to the smallest singular value of the characteristic matrix
A(λ; K). However, for large scale problems, the singular value decomposition becomes
computationally infeasible. In this case, the left eigenvector, u ∈ Cr \ {0}, of
the characteristic matrix A(λ) is evaluated as right eigenvector of the “transposed”
nonlinear eigenvalue problem

Ǎ(λ)u = 0, where Ǎ(λ) = λIr −
h∑
j=0

AT
je−λτj , for λ ∈ C, (1.22)

as proved in the following proposition.

Proposition 1.5 Let u ∈ Cr \ {0} and λ ∈ C. Vector u is the left eigenvector of (1.12)
corresponding to eigenvalue λ if and only if it is a right eigenvector of (1.22) corresponding
to eigenvalue λ̄.

Proof. Since for any λ ∈ C we have A(λ) = (Ǎ (
λ̄
) )∗, u∗A(λ) = 0 if and only if

Ǎ (
λ̄
)∗
u = 0, which concludes the proof. �

The matrix valued function Ǎ(λ) can be interpreted as the characteristic matrix
associated with the dual time-delay system of (1.4),

9x(t) =
h∑
j=0

AT
jx(t − τj ). (1.23)

In this view, a characteristic root and its associated left and right eigenvectors can
be hence computed by applying Algorithm 1.1 to the original system (1.4) and to its
dual system (1.23), followed by a pairing of eigenvalues and associated eigenvectors
induced by Proposition 1.5.

Example 1.4. In Example 1.2, not only the stability of system (1.14) is important, so
that the modeled person does not repeatedly get burns and frostbites, but also a fast
decay of the solution towards zero, in order to reduce the water bill. Therefore, in
this example, we are looking for the best reaction parameters by means of stability
optimization, considering the reaction parameter K as a controller K of system (1.21).

An application of the stability optimization, with M = 10 collocation points, yields
the stabilizing reaction parameter K = 0.3680, for which the spectral abscissa is



18 | Introduction

α = −0.9989. The �nal controller parameter is very close to the minimizer K = e−1

for which the rightmost characteristic roots λ = −1 corresponds to a double non-
semi-simple eigenvalue, Figure 1.5.

1/e 1 1.6

-1

-2

-3

-4

K
Re(λ)

Figure 1.5 Real part of the 10 rightmost characteristic roots varying the parameter K . For
K ∈ [1/e, 2] the depicted rightmost characteristic roots are complex conjugate. The spectral abscissa
corresponds to the maximum real part of the rightmost eigenvalue. The �nal iteration of the
optimization process is indicated by a circle.

Analogously to Example 1.2, the spectra of the in�nitesimal generator A and of
the solution operator T(1, 0) are respectively illustrated in Figures 1.6a and 1.6b. In
particular, Figure 1.6a shows the approximation of the rightmost characteristic roots
by the discretization with M = 10 collocation points. If the initial water temperature is
1 ◦C warmer than the desired one, then the person modeled by the designed reaction
parameter adjusts in few seconds the faucet in such a way that the water temperature
is close to the desired one, as illustrated in Figure 1.6c. This latter �gure also highlights
the asymptotic convergence rate of the solution, determined by the spectral abscissa.

Remark 1.4. Other spectrum-based techniques for the stabilization of autonomous
time-delay system are based on the direct assignment of multiple characteristic roots
[6, 7, 49, 68, 69, 96]. These analytic control design techniques are really di�cult to
apply to the general case (1.21), since the imposition of multiple characteristic roots
does not guarantee that these multiple eigenvalues are dominant, determining hence
the stability of the system. Moreover, analogously to the minimization of the spectral
abscissa in Example 1.4, the stability induced by these spectrum-based techniques is
sensitive to perturbation of the system parameters, as further discussed in section 1.2.1
and in the following chapter 2.
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(a) In�nitesimal generator spectrum (dots) and
its approximation by spectral discretization
with M = 10 (circles).
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(b) Solution operator spectrum.
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(c) System solution with initial state φ ≡ 1.

Figure 1.6 Analysis of the hot shower problem (1.14) with reaction parameterK = 0.3680, designed
by stability optimization method.

1.2 Contributions

In this section, the main contributions of the work are highlighted and compared with
the state of the art. These contributions are presented following the chronological
order of the author’s research work. Section 1.2.1 considers the generalization of
the stability assessment and stability optimization in a probabilistic setting, where
the system’s uncertainties are described by a random vector. Then, section 1.2.2
describes the behavior of the stability measures as function of system parameters,
and the e�ects of this behavior on polynomial approximation methods. The last
main contribution of this thesis concerns the stability assessment and stabilization
for periodic time-delay system whose delays and period are commensurate numbers,
as described in section 1.2.3.
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1.2.1 Probabilistic stability and stabilization approach

The mathematical approximation of natural phenomena and engineering applications
necessarily introduces uncertainties, since we are not able to determine with full
precision all the parameters and interactions. Therefore, a high level of uncertainty
is often contained in reliable mathematical models, related to speci�c physical
parameters, and a�ects the stability properties. For example, in the hot shower
problem (1.14), we cannot expect to accurately set the reaction parameterK . Therefore,
we add to a given value of the reaction parameter K a disturbance ω, which describes
the uncertainty, or the lack of precision. In this way, the model is given by

9x(t) = −(K + ω)x(t − 1), (1.24)

and its stability measures, its associated characteristic roots and Floquet multipliers,
are functions of the uncertainty ω.

Traditionally, the robustness of the stability analysis against uncertainties is
handled by bifurcation analysis or within a pseudo-spectral approach. The former,
implemented in the software package DDE-BIFTOOL [78], analyzes the functions of
the rightmost eigenvalues and largest Floquet multipliers varying a small number of
(controller and uncertain) parameters; for further information refer to the book [59]
and reference therein. The latter considers the supremum of the stability measures
obtained for any possible perturbation with a given upper bound [30, 57, 70]. This
worst-case analysis may lead to conservative results, in particular if the dependence
on these uncertain parameters is nonlinear.

In order to fully exploit the uncertainty structure, we consider the uncertainties as
realizations of a random vector with a given probability density function. In this way,
a time-delay system, whose parameters are perfectly known, can be interpreted as
a realization of an associated uncertain time-delay system, where some parameters
are determined by a random vector. For this uncertain system, the stability measure
is a random variable whose probability density function provides a probabilistic
measure of the stability assessment. The mean and the variance of the spectral
abscissa random variable permit to quantify the main properties of the probability
density function, and therefore they can be linked to the stability assessment of the
uncertain time-delay system. Moreover, minimizing the mean with a variance penalty
of this random spectral abscissa with respect to controller parameters provides a
stability optimization method which is more robust against uncertainties than the
deterministic approach described in section 1.1.4 and less conservative with respect
to the worst-case minimization, e.g. the pseudospectral minimization [30, 4].

In order to motivate the proposed approach and highlight the contributions, we
consider the hot shower problem (1.24) with controller parameter K and uncertainty
ω, where ω is a realization of a random variable uniformly distributed in the
interval [−0.1, 0.1]. Table 1.1 compares the results obtained by designing the reaction
parameter with a deterministic approach, considering ω = 0, or by the minimization
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of the mean and of the mean with a variance penalty, considering ω a realization of a
uniform random variable in [−0.1, 0.1]. Even though for the deterministic problem we
get a smaller value of the spectral abscissa, the mean, and in particular, the variance
are bigger compared to the probabilistic approach. The large value of the variance
highlights the sensitivity of the deterministic approach, indeed a small perturbation
might heavily a�ect the asymptotic exponential decay rate of the solutions, since
the designed reaction parameter is close to a non-Lipschitz behavior of the spectral
abscissa. On the other hand, the proposed approach presents a small variance ensuring
the robustness of the system stability against uncertainties. In addition, increasing
the variance penalty in the objective function, the probabilistic stabilization further
decreases the sensitivity of the spectral abscissa with respect to the disturbances.

Table 1.1 Spectral abscissa (ω = 0), its mean and variance for system (1.24) considering ω ∼
U[−1, 1] with designed reaction parameter K . The second column furnishes the results for the
deterministic control design, obtained by minimizing the spectral abscissa for the deterministic
model (1.14), while the second and third columns show the results of the probabilistic control
design, obtained by minimizing respectively the mean and the mean plus variance of the spectral
abscissa of system (1.24), with ω realization of a uniform random variable in [−0.1, 0.1].

Control design Deterministic Probabilistic
Mean Mean+κVariance, κ = 1

Designed parameter K 0.3680 0.4550 0.4510
Spectral abscissa α(ω) -0.9998 -0.8577 -0.8635
Mean of α(ω) -0.7487 -0.8516 -0.8518
Variance of α(ω) 3.8459·10−2 6.1633·10−3 6.0837·10−3

e−1 0.45 0.6

-0.3

-0.85

-1 spectral abscissa

mean
mean+variance

K

Figure 1.7 Objective functions comparison. The spectral abscissa for system (1.14) presents a
non-Lipschitz behavior, illustrated also in Figure 1.5, while the mean and the mean with a variance
penalty of the spectral abscissa behave smoothly for system (1.24), where ω is a realization of a
uniform random variable in [−0.1, 0.1].
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The introduction of probabilistic uncertainties has, in addition, a smoothing e�ect on
the stability optimization as illustrated in Figure 1.7. The non-Lipschitz behavior close
to the optimal point for the objective function of the deterministic system (1.14) does
not occur for the probabilistic model (1.24); indeed, in this latter case, the objective
function involves an integral (mean and variance) of the stability measure, which
smooths the integrand behavior.

1.2.2 Polynomial approximation of maximum eigenvalue function

Approximating a function by a polynomial is a widely used approach [90], and we have
already applied it in section 1.1.3 to approximate the in�nitesimal generator eigenvalue
problem into a �nite-dimensional one. Moreover, polynomial approximation is
the core of the polynomial chaos method used in uncertainty quanti�cation to
approximate a quantity of interest as a function of uncertain parameters and then
extract statistical information, like mean and variance [47, 103, 50].

In the last decades, applications of the polynomial chaos method to approximate
eigenvalue functions has acquired more and more interest in the scienti�c community,
as shown by the publications on standard eigenvalue problems [19, 27, 32, 46, 67, 74,
100] and on eigenvalue problems associated with autonomous time-delay systems
[94]. However, the accuracy of the polynomial approximation crucially depends
on the smoothness properties of the function to be approximated, and a maximum
eigenvalue function, like spectral abscissa, is not always di�erentiable, as illustrated
in Figures 1.5 and 1.7.

The second main contribution of this work stresses how the lack of smoothness
properties of stability measure functions a�ects the polynomial approximation and
polynomial chaos methods. To this end, the parallelism between polynomial chaos
theory and polynomial approximation is exposed, and the convergence results of the
latter framework are applied into the former context. These results represent a novelty
especially in the uncertainty quanti�cation literature, where the speci�c smoothness
properties of eigenvalue function are rarely considered [19, 27, 32, 46, 67, 74, 100, 94].

The focus on maximum eigenvalue functions, despite the widespread usage of
polynomial approximations, is motived by the applications in control design. Indeed,
as brie�y introduced in the previous section, the stability optimization techniques
provide, in general, non-smooth behavior of the stability measure for the controlled
system and the corresponding literature often overlooks the robustness against
parameter variations. In this context, where non-smooth behavior often occurs,
the accuracy of polynomial and polynomial chaos approximations might be highly
a�ected.
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1.2.3 Stability and stabilization for periodic time-delay systems

Several methods explicitly or implicitly discretize the monodromy operator eigenvalue
problem (1.3) into a generalized �nite-dimensional eigenproblem, providing an
approximation of the stability measure of the periodic time-delay system (1.1). For
example, the semi-discretization approach [37] is based on approximating the delays
by sawtooth functions, in such a way that the stability of the approximated system
can be inferred from the stability of a higher order di�erential equation in discrete
time. Analogously to the in�nitesimal generator discretization in section 1.1.3, the
monodromy operator and the solution operator are respectively discretized into a
matrix by collocation methods in the software package DDE-BIFTOOL [78] and in the
approach [8]. These methods rely on a discretize-�rst approach, where the accuracy
of the Floquet multipliers cannot be iteratively re�ned, as in the second stage of
Algorithm 1.1 for time-invariant system, discussed in section 1.1.3.

We propose a novel two-stage approach for periodic time-delay systems whose delays
τj and period T are assumed commensurate numbers. This latter assumption is
essential to alternatively characterize the Floquet multipliers by the solutions of a
�nite-dimensional nonlinear eigenvalue problem, where the product of the proposed
characteristic matrix with a vector is implicitly de�ned by the solution of an initial
value problem for an ordinary di�erential equation. The considered characteristic
matrix generalizes the result of [42, Appendix A.2] and [80, Theorem 2.1], analyzing a
scalar system with a single delay, and the characterization in [84, 71, 39], considering
periodic systems with only one delay equal to the period, and expressing the nonlinear
eigenvalue problem in terms of Floquet exponents, rather than Floquet multipliers.
Refer to [85, 79] and reference therein for an overview on characteristic matrices for
periodic time-delay system.

The novel stability assessment method �rst solves an eigenvalue problem obtained by
the discretization of the monodromy operator, furnishing multiple approximations of
the Floquet multipliers, and then iteratively re�nes these approximations, based on a
nonlinear eigenvalue problem formulation. This e�cient and reliable method for the
computation of dominant Floquet multipliers is conceptually similar to Algorithm 1.1,
since it exploits the dual interpretation of the Floquet multipliers arising from
either the in�nite-dimensional linear and the �nite-dimensional nonlinear eigenvalue
problem.

As a second contribution, we prove that the left eigenvectors of the characteristic
matrix can be characterized in terms of right eigenvectors of a “transposed” nonlinear
eigenvalue problem, analogously to the Proposition 1.5 for time-invariant systems.
Moreover, we characterize the left eigenvector in terms of right eigenfunctions
of the monodromy operator associated with a dual periodic time-delay systems,
analogously to the transposition of the autonomous system (1.4), given by (1.23).
These characterizations permit to extend the method for computing right eigenvectors
to left eigenvectors, avoiding the construction of the full characteristic matrix, in
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order to compute a left eigenvector corresponding to an already computed Floquet
multiplier.

As a third contribution, we develop a novel method for stability optimization of
periodic time-delay systems. Indeed, Proposition 1.4 applied to the characteristic
matrix permits to compute the derivatives of simple Floquet multipliers with respect
to (control) parameters, similarly to Algorithm 1.2. This result furnishes a good
initialization for the iterative solver, based on the nonlinear eigenvalue problem,
and can be applied in a stability optimization method, to minimize the spectral
radius. The proposed stability optimization method improves in two ways existing
techniques as [77, 63], where the monodromy operator is respectively discretized by
semi-discretization and by spectral collocation. First, the objective function, and its
gradient, whenever they exist, are at the level of the nonlinear eigenvalue problem,
used for local corrections in the proposed method, while the existing techniques
are based on a priori �xed discretization of the monodromy operator. Second, the
e�ciency and reliability of the optimization routine is improved by the explicit
computation of the gradient.

1.3 Outline

Based on the previously introduced preliminaries, chapter 2 analyzes the smoothness
properties of the stability measure functions, and the e�ects of these behaviors on
the polynomial approximation. The analyses of the stability measure smoothness
properties play a major role in the context of spectrum-based stability analysis and
stabilization, and is relevant for the following chapters 3-4. In particular, the stability
assessment and optimization for autonomous time-delay systems with uncertain
parameters, modeled as realizations of a random vector, is considered in chapter 3.
Chapter 4 deals with periodic time-delay systems, whose delay and period are
commensurable, and provides accurate and reliable methods for the computation
of the spectral radius and its minimization. An overview of the chapters and their
connections is illustrated in Figure 1.8.

Chapter 2
Smoothness properties of the stability measures

Chapter 3
Probabilistic stability optimization

Chapter 4
Stability & stabilization
for periodic delay systems

Figure 1.8 Overview of the di�erent chapters.
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Chapter 2 is mainly based on the paper [24] published in Numerical Algorithms, and
contains the taxonomy of the spectral abscissa behaviors, associated with an autonomous
time-delay system, presented in the paper [22] and in the conference proceeding [26].
Paper [22], published in Linear Algebra and its Applications, and the conference
proceeding [26], presented at the European Nonlinear Dynamics Conference 2017 ground
chapter 3. Chapter 4 is based on the manuscript [55] submitted to SIAM Journal on
Matrix Analysis and Applications.





2
Smoothness properties
of the stability measures

This chapter �rst analyzes the smoothness properties of the spectral abscissa as function of
system parameters. Even if the system matrices are analytic functions of the parameters, the
stability measure may not be di�erentiable and even non-Lipschitz continuous, due to multiple
dominant eigenvalues counted with multiplicity. This �rst analysis constitutes the basis for the
stability optimization methods presented in the following chapters 3–4. Moreover, the chapter
analyzes the e�ects of the lack of smoothness properties on the asymptotic convergence rate of
polynomial approximations, which are closely related to the polynomial chaos approximations,
if the parameters corresponds to realizations of random variables. The non-di�erentiable
behaviors heavily a�ect not only the approximation errors of Galerkin and collocation based
polynomial approximations, but also the numerical errors to evaluate the coe�cients in the
Galerkin approach with integration methods.

The behavior of the stability measures, introduced in section 1.1, as a function
of system parameters is determined by the dominant eigenvalues. In particular,
the smoothness properties of the spectral abscissa and of the spectral radius are
respectively determined by the behavior of the dominant characteristic roots (in
the sense of being rightmost) and of the dominant Floquet multipliers (in the sense
of having maximal modulus) . The elements of an operator spectrum, which are
dominant eigenvalues in a compact parameter space, are �nite in number, due to
properties of the in�nite-dimensional operator spectrum. The following analysis on
the smoothness properties and polynomial (chaos) approximation can be extended
to real-valued functions determined by a �nite number of dominant eigenvalues for
a general parametrized eigenvalue problem. Hence, even though the results can be
trivially generalized to the spectral radius of the monodromy operator for periodic
time-delay systems, for simplicity, we restrict to analyze the spectral abscissa function
for autonomous time-delay systems

9x(t) =
h∑
j=0

Aj (ω)x(t − τj (ω)), (2.1)

where ω ∈ Ω ⊂ RD models D ∈ N parameters subject to uncertainties, the parameter
space Ω is a compact subset of RD , and for every j ∈ {0, . . . ,h}, Aj : Ω → Rr×r and
τj : Ω → R+ are smooth functions.



28 | Smoothness properties of the stability measure

The spectral abscissa associated with system (2.1) is a function of the uncertainties ω,

α : Ω ⊂ RD → R, such that ω 7→ α(ω) := max
λ∈C
{Re(λ) : det (A(λ;ω)) = 0} , (2.2)

where A(λ;ω) is the characteristic matrix depending on the eigenvalue λ ∈ C and
the uncertainty ω,

A(λ;ω) = λIr −
h∑
j=0

Aj (ω)e−λτj (ω).

The chapter is organized as follows. In section 2.1, we brie�y review the behavior of
the spectral abscissa function furnishing test-cases, which are then analyzed in the
following two sections. Section 2.2 focuses on the polynomial expansion of the spectral
abscissa function, explaining the parallelism between polynomial approximation
and polynomial chaos theory. In section 2.3, the polynomial approximation for the
parametric eigenvalue problem with D = 1 is investigated. Then, in section 2.4,
the multivariate polynomial approximation (with D > 1) is analyzed through some
numerical experiments. The chapter ends in section 2.5 furnishing novel perspective
on future research directions to approximate the stability measure functions. The
numerical experiments of this chapter, performed using the software Chebfun [16],
are publicly available along with the tutorial [23].

2.1 Behavior of the spectral abscissa

In general, the spectral abscissa function (2.2) is smooth almost everywhere in the
parameter space Ω. However, even if the system matrices are analytic functions
of the parameters, the spectral abscissa is in general not di�erentiable everywhere
due to the presence of the maximum operator in (2.2) and due to the presence of
multiple dominant characteristic roots. Indeed, in a set of measure zero, more than
one dominant characteristic root, counted with multiplicity, can present the same
real part; in these points, the spectral abscissa function might be non-di�erentiable
and even non-Lipschitz continuous.

We distinguish the di�erent qualitative behavior of the spectral abscissa function by
considering the dominant characteristic roots, which are characteristic roots λ ∈ C
satisfying Re(λ) = α(ω) and Im(λ) ≥ 0. Indeed, relevant results on the behavior of
eigenvalues of parametrized eigenvalue problems [44, 53] allow us to characterize
the smoothness properties of the spectral abscissa function as follows.

Smooth behavior The spectral abscissa is smooth on the entire parameter space
Ω, if for all ω ∈ Ω, there is only one dominant characteristic root, whose algebraic
and geometric multiplicity is equal to 1, i.e. the dominant characteristic root is simple
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in Ω. In this case, the partial derivative of the dominant characteristic root and of the
spectral abscissa function with respect to a system parameter can be computed by
the explicit formula stated in Proposition 1.4.

Example 2.1. The following parametric eigenvalue problem with ω ∈ [−1, 1]
(
λI2 −

(
eω 0
0 −1

))
v = 0, v ∈ C2 \ {0},

presents a smooth behavior of the
spectral abscissa function

α(ω) = eω , ω ∈ [−1, 1],

as illustrated in Figure 2.1.

−1 1

e−1

e

ω

Re(λ)

Figure 2.1 Real part of the spectrum, where
the spectral abscissa is highlighted.

Lipschitz behavior The spectral abscissa may not be di�erentiable but it is
Lipschitz continuous in Ω, if the dominant characteristic root is simple in the domain
Ω, except in a set of measure zero, where the rightmost eigenvalues are multiple but
their algebraic multiplicity is always equal to the geometric one, i.e. the rightmost
eigenvalues are semi-simple. In this situation, the dominant characteristic roots can
cross but not overlap each other or, if they overlap, then their algebraic multiplicity
equals the geometric one.

Example 2.2. The following parametric eigenvalue problem with ω ∈ [−1, 1]

(
λI2 −

(
ω 0
0 0

))
v = 0, v ∈ C2 \ {0},

presents a Lipschitz continuous spectral
abscissa function

α(ω) =
{

0, if ω ∈ [−1, 0),
ω, if ω ∈ [0, 1].

Indeed, the spectral abscissa is a piece-
wise linear function, as shown in Fig-
ure 2.2, and in ω = 0 there is a multiple
semi-simple characteristic root.
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Figure 2.2 Real part of the spectrum, where
the spectral abscissa is highlighted.

Continuous behavior The spectral abscissa is continuous but typically not
Lipschitz continuous if there exists ω ∈ Ω where there is a dominant characteristic
root with algebraic multiplicity greater than the geometric one, i.e. this dominant
characteristic root is non-semi-simple.
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Example 2.3. The following parametric eigenvalue problem with ω ∈ [−1, 1]

(
λI2 −

(
0 ω
1 0

))
v = 0, v ∈ C2 \ {0},

presents a continuous spectral abscissa
function

α(ω) =
{

0, if ω ∈ [−1, 0),√
ω, if ω ∈ [0, 1].

Indeed, the spectral abscissa is not Lips-
chitz continuous at ω = 0, where there is
a double non-semi-simple characteristic
root.
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ω

Re(λ)

Figure 2.3 Real part of the spectrum, where
the spectral abscissa is highlighted.

The non-smooth behaviors of the spectral abscissa function often occur in the
stabilization of time-delay systems. The minimization of the dominant characteristic
roots analyzed in section 1.1.4 leads to multiple (and, in general, non-semi-simple)
dominant characteristic roots. In the minimum, the dominant characteristic roots
counted with multiplicity are mainly equal to the dimension of the controller plus
one, k + 1. Indeed, we can intuitively think that each controller parameter can shift
to the left a single rightmost characteristic root, when all the k controller parameters
are designed so that the k rightmost characteristic roots, counted with multiplicity,
have the same real part as the k + 1th rightmost characteristic root, then a minimum
of the stability optimization is reached. This situation occurs in Example 1.4, where
the minimal spectral abscissa is attained when there is a double non-semi simple
dominant characteristic root.

Additional novel control design techniques, introduced in Remark 1.4, directly impose
multiple non-semi-simple dominant characteristic roots in the spectrum of the
controlled time-delay system [68, 96, 49, 69, 6, 7]. These design techniques are simple
but they provide, in general, non-smooth behaviors of the spectral abscissa for the
controlled system, yet in the corresponding literature no attention is paid to robustness
against parameter variations, while the usage of the polynomial chaos expansion
may become questionable. Therefore, we are going to systematically show through
numerical examples, how the non-smooth behaviors of the spectral abscissa a�ect
the polynomial approximation, which is strictly connected to the polynomial chaos
theory as explained in the following section.
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2.2 Polynomial (chaos) expansion

Let {pi (ω)}i ∈N be a degree graded polynomial basis orthogonal with respect to a
smooth non-negative function w : Ω → R+, ω 7→ w(ω) de�ned and normalized on
the compact support Ω ⊂ RD , i.e.

∫
Ω
w(ω)dω = 1. The spectral abscissa function (2.2)

can be expressed by a polynomial expansion in the basis {pi (ω)}i ∈N

α(ω) =
∞∑
i=0

cipi (ω), (2.3)

where the coe�cients ci ∈ R are evaluated by

ci =
〈α,pi 〉w
‖pi ‖2w

, i ∈ N. (2.4)

The w-inner product, used in the above equation, is de�ned for all f , д : Ω → R such
that

〈f ,д〉w =
∫
Ω
f (ω)д(ω)w(ω)dω . (2.5)

and the induced w-norm is determined by ‖ f ‖w =
√
〈f , f 〉w.

In order to explain the parallelism between the polynomial (2.3) and the polynomial
chaos expansion, we interpret ω as a realization of a real random vector ω, with
probability density function w(ω). The random variables modeling the uncertainties
are denoted with bold letters, e.g. ω, while the normal font indicates their realizations
ω ∈ Ω. With this notation, α(ω) is a random variable while α : Ω → R, ω 7→ α(ω) is
a function depending on the realization ω ∈ Ω.

The mean and the variance of the spectral abscissa random variable α(ω), respectively
de�ned by

E(α(ω)) :=
∫
Ω
α(ω)w(ω)dω, and V(α(ω)) :=

∫
Ω
(α(ω) − E(α(ω)))2w(ω)dω, (2.6)

exist and are �nite, since the integrands are continuous functions, as described in
the previous section 2.1, and the domain of integration Ω is a compact subset of RD .
Moreover, the polynomial expansion of α(ω)

α(ω) =
∞∑
i=0

cipi (ω), (2.7)

corresponds to a polynomial chaos expansion of the spectral abscissa function with
germ ω.

The polynomial chaos expansion permits to compactly de�ne a general random
variable, through the chaos coe�cients ci , and the germ ω, which also speci�es the
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w-orthonormal polynomial basis {pi }i ∈N. The chaos coe�cients ci convey mean,
variance and variance-based sensitivity analysis of the random variable. Indeed,
other than for the computation of mean and variance, they permit to decompose the
variance into the contribution of individual model parameters and the interaction
between each of them (Sobol’s sensitivity index) or to measure the total variance due
to each single model parameter (total order sensitivity index). For further information
on the sensitivity indexes, refer to [34, 82].

Theorem 2.1 Given a polynomial chaos expansion (2.7), the following formulas hold:

1. Mean: E(α(ω)) = c0.

2. Variance: V(α(ω)) = ∑∞
i=1 c

2
i ‖pi ‖2w.

3. If the polynomial basis {pi (ω)}i ∈N is constructed by a tensor product of univariate
polynomial bases {pi ,d (ωd )}d ∈{1, ...,D }i ∈N through the bijective D-tupling function
πD : ND → N, (i1, . . . , iD ) 7→ i in such a way that

pi (ω) =
D∏
d=1

pid ,d (ωd ), with (i1, . . . , iD ) = π−1
D (i), (2.8)

then, the Sobol’s sensitivity index Sd(α(ω)) associated with the non-empty subset
of uncertain parameters ωd , with d ⊆ {1, . . . ,D} and d , ∅, is determined by

Sd(α(ω)) =
∑
i ∈Qd

c2
i ‖pi ‖2w
V(α(ω)) ,

where Qd = {i ∈ N : π−1
D (i) = (i1, . . . , iD ), such that, for every d =

1, . . . ,D, id > 0 if and only if d ∈ d}. For d ∈ {1, . . . ,D}, the e�ect of the
d-th parameter ωd can be quanti�ed by the total order sensitivity index

Sd (α(ω)) =
∑

d⊆{1, ...,D },
d ∈d

Sd(α(ω)).

Proof. A proof of the �rst two classical results 1 and 2 can be found in [94], while the
last result 3 is derived by [14]. �

Theorem 2.1 relies on the orthogonality of the polynomial basis {pi }i ∈N with respect
to the probability density function w(ω) of the random vector ω. For example, the
Legendre polynomials are orthogonal to the probability density functions of uniform
distributions [103, 47].

The polynomial chaos theory and polynomial approximation are closely related and
in the following sections we apply the results of the latter into the former context. To
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this end, the asymptotic convergence rate of polynomial (chaos) approximation are
stated in the L∞ norm, i.e. the supremum norm ‖ · ‖s for every function f : Ω → R.
This represents a novelty in the context of the polynomial chaos theory, where the
L∞ norm is rarely employed, even though it is more stringent than the L2 and the L1

norms.

The behavior of the spectral abscissa function (2.2), α(ω), is fundamental for the
accuracy of the truncations of its polynomial expansion (2.3) and the corresponding
polynomial expansion (2.7) of α(ω), as we are going to analyze in the following
sections. However, �rst, we explicit the polynomial (chaos) expansion of the examples
introduced in section 2.1.

Example 2.4. We analytically compute the polynomial (chaos) expansion of the
spectral abscissa functions given in Examples 2.1–2.3. In the parameter space Ω =
[−1, 1], we consider the Legendre polynomial basis {pi }i ∈N, which is orthogonal with
respect tow(ω) = 1/2. Indeed, for everyω ∈ [−1, 1], and for i, j ∈ N, the orthogonality
of the Legendre polynomial basis is given by

〈pi ,pj 〉w =
∫
Ω
pi (ω)pj (ω)w(ω)dω =

{
‖pi ‖2w = 1

2i+1 if i = j,

0 otherwise.

The w function corresponds to the probability density function of a random variable
uniformly distributed in the interval [−1, 1]. Therefore, the polynomial expansion in
the Legendre polynomial basis orthogonal to w can be interpreted as a realization of
the polynomial chaos expansion, whose germ ω is a uniform random variable.

To analytically express the coe�cients ci in (2.4), we evaluate the w-inner product
between the spectral abscissa functions and the i-th Legendre polynomial. We
start analyzing the spectral abscissa de�ned in Example 2.1 and we furnish the
corresponding w-inner product iteratively, starting from:

〈α,p0〉w = 1
2

(
e − e−1) .

Set i ∈ N \ {0}, by using integration by parts, and the following Legendre polynomial
properties

pi (±1) = (±1)i , and dpi+1(ω)
dω =

bi/2c∑
k=0

pi−2k (ω)
‖pi−2k ‖2w

,

we get

〈α,pi+1〉w = 1
2

(
e + (−1)i

e − 2
bi/2c∑
k=0

〈α,pi−2k 〉w
‖pi−2k ‖2w

)
=

1
2

(
e + (−1)i

e − 2
bi/2c∑
k=0

ci

)
,
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where ci indicates the i-th coe�cients of polynomial approximation (2.3) for the
spectral abscissa function α(ω) = eω , with ω ∈ [−1, 1].
By [1, Relations 22.13.8-22.13.9], the w-inner product of the spectral abscissae of
Example 2.2 and 2.3 can respectively be expressed for every i ∈ N as

〈α,pi 〉w =



(−1)j Γ(j− 1
2 )

4Γ(− 1
2 )Γ(j+2) , if i = 2j,

1/6, if i = 1,
0, otherwise;

〈α,pi 〉w =


(−1)j Γ(j− 1

4 )Γ( 3
4 )

4Γ(− 1
4 )Γ(j+ 7

4 ) , if i = 2j,
(−1)j Γ(j+ 1

4 )Γ( 5
4 )

4Γ( 1
4 )Γ(j+ 9

4 ) , if i = 2j + 1,

where Γ(·) denotes the Gamma function. These inner products are rational numbers,
computable without any error via a symbolic software.

Remark 2.1. Close to multiple non-semi-simple dominant characteristic roots the
spectral abscissa might present a very large Lipschitz constant. This phenomenon
might signi�cantly a�ect the transient behavior of the polynomial approximation
errors, increasing the polynomial degree, but it does not a�ect the asymptotic
convergence behavior of the polynomial approximation.

2.3 Univariate polynomial approximation

In practice, for computational reasons, the polynomial expansion (2.3) is approximated
by �nitely many terms

αP (ω) =
P∑
i=0

c̃ipi (ω). (2.9)

Several methods exist to compute the coe�cients c̃i ; here we focus on the Galerkin
and collocation approaches, analyzed in sections 2.3.1 and 2.3.2, respectively. Both
methods are applied to the model problems of section 2.1 by increasing the polynomial
degree P ∈ N, in order to inspect the L∞ convergence rates of the polynomial
approximation (2.9) and compare them with the asymptotic theoretical results.3

2.3.1 Galerkin approximation

Given a �nite polynomial basis {pi }Pi=0, the Galerkin approach �nds an approxima-
tion (2.9) of spectral abscissa function (2.2) such that the residual is orthogonal with
respect to the polynomial basis, in formula

〈α − αP ,pi 〉w = 0, for every i = 0, . . . , P . (2.10)

3 The reader interested in a fully automated procedure for polynomial approximation, which adaptively
select the degree P by monitoring the decrease of the magnitude of the coe�cients c̃i , is referred to
software Chebfun, used for example in the tutorial [23] and in [90].
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This leads to c̃i = ci , where the coe�cients ci are de�ned in (2.4). Hence, the Galerkin
approach is nothing else than a truncation up to order P of polynomial series (2.3).
Moreover, it provides the optimal approximation in the w-norm, i.e.

‖α − αP ‖w =
√∫

Ω
(α(ω) − αP (ω))2w(ω)dω

is minimized.

This approximation of α(ω) corresponds to the stochastic Galerkin approximation of
α(ω) in the polynomial chaos theory.

The convergence analyses consider, �rst of all, the truncation error up to order P of
the polynomial expansion, and then, the numerical error to compute coe�cient ci .

Approximation error

If the coe�cients ci are correctly evaluated, the following theorem, derived by [99],
determines the error bounds of the polynomial approximation (2.9), obtained by
the Galerkin approach with Legendre polynomials {pi }Pi=0 (with w(ω) = 1/2 for
ω ∈ [−1, 1]).
Theorem 2.2 Let α , α ′, . . . α (k−1) be absolutely continuous on Ω = [−1, 1], with k > 1.
If α (k) presents bounded variation with respect to the Chebyshev weighting function, i.e.∫ 1

−1

��α (k+1)(ω)
��

√
1 − ω2

dω = Ṽk < ∞,

then, for each P > k + 1, the following relation holds

‖α − αP ‖s ≤
√
π

2
Ṽk

(k − 1)(P − k)k−0.5 .

The level of smoothness, i.e. the maximum k satisfying the assumption of Theorem 2.2,
heavily determines the convergence behavior of polynomial approximation (2.9). Only
the smooth behavior of the spectral abscissa veri�es the assumptions of Theorem 2.2,
and satis�es them for all k ∈ N, ensuring a convergence rate faster than O (

P−k
)
, for

all k ∈ N. In fact, the convergence rate for this case is at least geometric, based on
analytic extension of real functions on the complex plane [99]; such extension always
exists for a real analytic function.

The truncation error obtained by the Galerkin approach for the spectral abscissa
of parametric eigenvalue problem in Example 2.1 presents a spectral convergence,
more precisely the order of convergence is O (

e−cP
)

with c ∈ R+ \ {0}, as shown in
Figure 2.4. The spectral abscissae of Examples 2.2 and 2.3 converge with an order of
O (

P−1) , and O (
P−0.5) , respectively. The polynomial approximation coe�cients are

analytically evaluated in Example 2.4.
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Figure 2.4 Convergence history for Galerkin approach. Relative errors of polynomial
approximation (2.9) obtained by the Galerkin approach up to order P for the spectral abscissa
functions of Examples 2.1–2.3.

Numerical error

It is not always possible to analytically compute the coe�cients ci = c̃i with (2.4),
therefore an integration method based on M + 1 nodes can approximate the integrals
〈α,pi 〉w and consequently the coe�cients, denoted by c̃Mi . This type of approach is
known as non-intrusive spectral projection in the polynomial chaos framework.

In this section, the coe�cients of the Galerkin polynomial approximation αMP are
approximated by the following integration methods based on M + 1 points.

Classical integration methods based on an equally spaced discretization of Ω contain-
ing the extremes of Ω: −1 and 1. In particular, we focus on extended trapezoidal
rule and extended Simpson’s rule. For the latter method, M is required to be an even
number.

Interpolatory quadrature rules approximate an integral by integrating the interpolant
of its integrand, where the degree of the polynomial interpolant is at most M . We
consider Clenshaw-Curtis and Gauss quadrature rules based on Chebyshev and
Legendre points, respectively. (Further information on the interpolatory properties
of Chebyshev points are presented in the upcoming section 2.3.2.)

For smooth functions, including the smooth behavior of the spectral abscissa, the
extended trapezoidal and Simpson’s rules provide an order of convergence O (

M−2)
and O (

M−4) , respectively.

Figure 2.5 shows the numerical errors of classical integration methods to evaluate the
�rst coe�cient c0 of polynomial expansion (2.3) for the examples in section 2.1. The
convergence of the spectral abscissa function in Example 2.1 follows the theoretical
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Figure 2.5 Convergence history of c̃M0 for classical integration methods. Relative errors to compute
the �rst coe�cient c̃M0 of (2.9) with extended Trapezoidal and Simpson’s rules based on M + 1
equally spaced points for the spectral abscissa functions of Examples 2.1–2.3.

error bounds. For Examples 2.2 and 2.3, the convergence rates for both classical
integration methods are O (

M−2) and O (
M−1.5) , respectively.

Whenever the integrand is smooth enough to be well-approximated by a polynomial,
the interpolatory quadrature rules perform better than the classical integration rule;
as stated in the following theorem, combining the results of [90, 102, 101].

Theorem 2.3 For an integer k ≥ 1, let α , α ′, . . ., α (k−1) be absolutely continuous on
Ω = [−1, 1] and given i ∈ N let (α(ω)pi (ω))(k ) present bounded variation, i.e.

∫ 1

−1

���(α(ω)pi (ω))(k+1)
��� dω = Vi ,k < ∞.

Then, the Clenshaw-Curtis quadrature rule for the approximation of ci with M +1 points,
i.e. c̃Mi , satis�es ��ci − c̃Mi �� ≤ 32

15π
Vi ,k

k(M − k)k , for M > k,

and (M + 1)-Gauss quadrature satis�es

��ci − c̃Mi �� ≤ 32
15π

Vi ,k

k(2M + 1 − k)k , for M > 2k + 1.

Moreover, for k = 1, Clenshaw-Curtis quadrature rule presents a convergence rate of
O (

M−2) , while Gauss quadrature error is at most of size O (
M−2 ln(M)) .

The theorem can be applied to smooth behavior of the spectral abscissa, providing a
convergence rate faster than O (

M−k
)

for all k ∈ N, for both interpolatory quadrature
rules. Moreover, the theorem ensures that if the spectral abscissa is Lipschitz
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continuous, and it is hence absolutely continuous, then Clenshaw-Curtis quadrature
has a rate of convergence O (

M−2) , while the Gauss quadrature errors converge, at
least, as O (

M−2 ln(M)) .
Figure 2.6 illustrates the numerical error induced by the approximation with
interpolatory quadrature rules of the �rst coe�cient c0 of Examples 2.1–2.3. The
spectral abscissa of Example 2.1 spectrally converges with order O (

e−cM
)

for
c ∈ R+ \ {0}, improving the convergence rate of the classical integration methods.
For non-smooth cases, Examples 2.2 and 2.3, the convergence rates of interpolatory
quadrature rules are like the ones obtained by classical integration methods, Figure 2.5.

From this numerical experiment, Clenshaw-Curtis and Gauss quadrature rules present
similar convergence rates. Hence, the bound of Theorem 2.3 for smooth and Lipschitz
functions are optimal for Clenshaw-Curtis quadrature rule, and conservative for
Gauss quadrature rule (as already observed in [102, 101]).
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)
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Gauss & Clenshaw-Curtis
Lipschitz

Clenshaw-Curtis
SmoothGauss
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���c0−c̃M0
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Figure 2.6 Convergence history of c̃M0 for interpolatory quadrature rules. Relative errors to
compute the �rst coe�cient c̃M0 of (2.9) with Clenshaw-Curtis and Gauss quadrature rules with
M + 1 points for the spectral abscissa functions of Examples 2.1–2.3.

Remark 2.2. When the coe�cients c̃Mi of αMP are approximated by interpolatory
quadrature rules, it is advised to set M ≥ P as explained with further details at the
end of the upcoming section 2.4.1.

Remark 2.3. In the polynomial chaos framework, the �rst coe�cient c̃M0 can be
interpreted by Theorem 2.1 as the mean of the spectral abscissae in Examples 2.1–2.3,
considering ω in these examples a realization of a uniform random variable in [−1, 1].
The corresponding convergence rates for the mean (Figures 2.5 and 2.6) provide only
insights on the numerical error of the integration method, and are not meaningful for
the truncation error of the polynomial approximation.
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2.3.2 Collocation approach

The collocation approach determines the coe�cients of (2.9) by interpolation on P + 1
points, {ξm}Pm=0 ⊂ Ω:

αP (ξm) = α(ξm), for all m ∈ {0, . . . , P}. (2.11)

The polynomial coe�cients c̃i of αP can be computed by solving a linear system of
P + 1 equations, and this can be often done with a negligible numerical error.

Remark 2.4. The collocation method is mainly a�ected by approximation errors,
while the Galerkin approach might also present a numerical error, due to numerical
computation of the coe�cients, as illustrated in the previous section. On the other
hand, whereas the Galerkin approach dynamically computes the coe�cients, i.e.
each coe�cient is evaluated independently from the others, the collocation approach
simultaneously evaluates all P + 1 coe�cients, solving a linear system of equations.

A widely used choice of interpolating nodes for the interval [−1, 1] are Chebyshev
nodes. The polynomial interpolant satis�es error bounds, similar to Theorem 2.2, and
provides a near-best approximation in L∞ sense, as stated in the following theorem,
whose proof can be found in [90, Theorems 7.2 and 16.1].

Theorem 2.4 If α , α ′, . . . α (k−1) are absolutely continuous on Ω = [−1, 1] and α (k)

presents bounded variation Vk , i.e.
∫ 1

−1

���α (k+1)(ω)
��� dω = Vk < ∞,

then the Chebyshev interpolant αP of degree P > k , satis�es

‖α − αP ‖s ≤
4
π

Vk

πk(P − k)k .

Moreover, if α?
P is the best polynomial approximation of order less than or equal to P ,

then

‖α − αP ‖s ≤
(
2 + 2

π
log(P + 1)

) α − α?
P


s .

Theorem 2.4 ensures the collocation approach on Chebyshev nodes converges, at
least, as O (

P−1) and faster than O (
P−k

)
for all k ∈ N, for the Lipschitz and smooth

behaviors of the spectral abscissa, respectively.

The polynomial interpolant on Chebyshev points can be computed by Fast Fourier
Transform based algorithms, mapping interpolating values onto coe�cients of
a polynomial approximation in the Chebyshev polynomial basis. Chebyshev
interpolants for Examples 2.1–2.3, as well as the best L∞ polynomial approximation
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Figure 2.7 Convergence history of best and near-best polynomials. Relative errors of polynomial
approximation (2.9) obtained by interpolation on P +1 Chebyshev points (near-best approximation)
for the spectral abscissa functions of Examples 2.1–2.3. The relative error for the best polynomial
approximation in the L∞ sense is also shown.

are evaluated by Chebfun [23]. Figure 2.7, other than indicating the interpolating error
(near-best polynomial approximation), shows the convergence rates of the best L∞
polynomial approximation. The convergence rates are analogous to the ones obtained
by the Galerkin approach (section 2.3.1, Figure 2.4) and agree with Theorem 2.4 for
smooth and Lipschitz behaviors.

Remark 2.5. In order to apply Theorem 2.1, the polynomial approximation
in Chebyshev polynomial basis can be recast as a truncated polynomial chaos
expansion in the uniformly distributed germ using a polynomial transformation.
This transformation converts the Chebyshev expansion coe�cients into the Legendre
coe�cients and does not a�ect the results shown in Figure 2.7, since the numerical
error of the transformation is negligible [88].

2.4 Multivariate polynomial approximation

In this section, �rst of all, we generalize polynomial approximation (2.9) to handle
multiple variables, i.e. D > 1. With this novel generalization, the coe�cients c̃i can
be evaluated by the Galerkin and collocation approaches, through the corresponding
formula (2.10) and (2.11). Then, we consider examples of D = 2 parametric
eigenvalue problems, where spectral abscissa functions present the di�erent behaviors
characterized in section 2.1. The Galerkin and collocation approaches are, hence,
applied to the latter benchmark in sections 2.4.1 and 2.4.2, respectively.

We focus on polynomial approximation using a degree graded polynomial basis
{pi (ω)}i ∈N, constructed by products of univariate degree graded polynomial bases
{pi ,d (ωd )}d ∈{1, ...,D }i ∈N , satisfying hence the assumption of Theorem 2.1 point 3. The
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degree grading of the polynomial basis {pi }i follows a norm ‖ · ‖ on ND , which is
associated with a D-tupling function πD : ND → N. Therefore, the basis is obtained
by formula (2.8), and the generalization of polynomial approximation (2.9) for the
multivariate case is given by

αP (ω) =
∑

‖π −1
D (i)‖≤Pd , i ∈N

c̃ipi (ω) =
P∑
i=0

c̃ipi (ω), (2.12)

where P+1 is equal to the number of polynomials in {pi }i ∈N such that the multivariate
degree is less than or equal to Pd ∈ N.

Remark 2.6. The bijective D-tupling functions πD : ND → N provide an ordering
with respect to each stochastic dimension of the problem, allowing the extension from
the univariate to the multivariate case. Indeed, we are interested in the D-tupling
functions such that if for every i, j ∈ N with π−1

D (i) = (i1, . . . , iD ) and π−1
D (j) =

(j1, . . . , jD ) we have id < jd for all d = 1 . . . ,D, then i < j. Further information on
D-tupling functions can be found in [86].

Two popular choices of norms are the 1-norm, ‖π−1
D (i)‖1 =

∑D
d=1 id , and the ∞-

norm, ‖π−1
D (i)‖∞ = maxd=1, ...,D id , which are associated with the total and maximal

degrees, respectively. In these cases, the number of coe�cients c̃i in (2.12) satis�es
P + 1 =

(Pd+D
D

)
and P + 1 = (Pd + 1)D for the total and maximal degree, respectively.

Additional information on the multivariate degree can be found in [91].

If the bases {pi ,d (ωd )}i ,d are orthogonal with respect to wd (ωd ) with ωd ∈ Ωd ⊂ R,
then the D-dimensional polynomial basis {pi (ω)}i is orthogonal to the normalized
weight function

w(ω) =
D∏
d=1
wd (ωd ), ω ∈ Ω =

D×
d=1

Ωd , ωd ∈ Ωd . (2.13)

In the polynomial chaos theory, probability density function (2.13) corresponds to
the assumption that the random vector ω is constituted by D independent random
variables ωd , d = 1, . . . ,D. In this framework, the multivariate polynomial degree
determines the truncation scheme, and in particular, the total degree corresponds to
the standard truncation scheme.

The upcoming sections 2.4.1 and 2.4.2 apply the Galerkin and collocation approaches
to the following benchmark examples with D = 2 uncertain parameters.

Example 2.5. We consider the spectral abscissa functions associated with the
oscillator with feedback delay system

:x(t) = −ω2
1x(t) − 2ω1ω2 9x(t) + K1x(t − 1) + K2 9x(t − 1), (2.14)
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such that x(t) ∈ R is the normalized position at time t ∈ [−1,∞), ω1 ∈ Ω1 = [0.9, 1.1]
and ω2 ∈ Ω2 = [0.1, 0.2] are respectively angular frequency and damping ratio, while
(K1,K2) ∈ R2 describes the control force which acts with a delay of τ = 1. The control
variables, reported in Table 2.1, provide the di�erent behaviors of the spectral abscissa
function (section 2.1) for parametric eigenvalue problems with D = 2. In particular,
the controller, which ensures only the continuous behavior of the spectral abscissa due
to a triple non-semi-simple characteristic root, is designed by minimizing the spectral
abscissa with the stability optimization method analyzed in section 1.1.4, considering
ω1 = 1 and ω2 = 0.15. The controller, furnishing a Lipschitz continuous behavior, is
obtained by the probabilistic approach introduced in section 1.2.1, minimizing the
mean of the spectral abscissa, considering ω1 and ω2 independent random variables
uniformly distributed in Ω1 and Ω2, respectively. Further details on this example from
a stabilization point of view are given in the next chapter, section 3.3.3.

Table 2.1 Numerical values of the control parameters K1, K2 for system (2.14), corresponding to
di�erent behaviors of the spectral abscissa for (ω1,ω2) ∈ Ω1 × Ω2.

Behavior Smooth Lipschitz Continuous
K1 0.2 0.5105 0.6179
K2 0.2 -0.0918 -0.0072

For this problem, the spectral abscissa functions are not known analytically, even
though it is possible to compute their values given ω ∈ Ω = Ω1 × Ω2, as
explained in section 1.1.3. In particular, the convergence rates in the L∞ norm of
Figures 2.11 and 2.12 are computed with respect to 106 equidistant points in Ω.

Without loss of generality, the linear transformation [−1, 1]2 → Ω is embedded into
the system (2.14), and in the associated parametric eigenvalue problems. Therefore,
polynomial bases, interpolation and cubature rules are not shifted and rescaled to Ω.

The degree grading of the polynomial basis, considered in the following sections, are
speci�ed by:

Total Degree is determined by the 1-norm, such that ‖(i1, i2)‖1 = i1 + i2. The total
degree is associated with a pairing function (i.e. a D = 2-tupling function) assigning
consecutive numbers to points along diagonals of N × N, as the Cantor pairing
function π[t](i1, i2) represented in Figure 2.8a and de�ned by

π[t](i1, i2) =
i21 + 3i1 + 2i1i2 + i2 + i22

2 . (2.15)

The polynomial approximation, obtained from the basis corresponding to the pairing
function π[t], i.e. {p[t]i }i , such that the polynomials p[t]i have total degree less than or
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equal to Pd , is

α [t]P (ω) =
∑

π −1
[t] (i)


1
≤Pd , i ∈N

c̃ [t]i p
[t]
i (ω) =

P∑
i=0

c̃ [t]i p
[t]
i (ω), (2.16)

where P + 1 =
(Pd+2

2
)
=
(Pd+1)2

2 +
(Pd+1)

2 . From (2.15), we have P = π[t](Pd , 0).
Maximal Degree is determined by the∞-norm, such that ‖(i1, i2)‖∞ = max{i1, i2}. A

pairing function, associated with the maximal degree, assigns consecutive numbers
to points along the edges of squares of N × N, e.g. the Rosenberg-Strong pairing
function π[m](i1, i2) illustrated in Figure 2.8b and speci�ed by

π[m](i1, i2) = (max{i1, i2})2 +max{i1, i2} + i1 − i2. (2.17)

The polynomial approximation obtained from the corresponding basis {p[m]i }i , such
that the polynomials p[m]i have maximal degree less than or equal to Pd is

α [m]P (ω) =
∑

π −1
[m](i)


∞
≤Pd , i ∈N

c̃ [m]i p[m]i (ω) =
P∑
i=0

c̃ [m]i p[m]i (ω), (2.18)

where P + 1 = (Pd + 1)2. From (2.17), we have P = π[m](Pd , 0).
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Figure 2.8 Pairing (or 2-tupling) functions associated with the total and maximal degree of
bivariate polynomials.

2.4.1 Galerkin approach

In this section, the spectral abscissa functions associated with (2.14) with control
parameters of Table 2.1, are approximated by the Galerkin approach on total and
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maximal Legendre tensor basis, {p[t]i }i ∈N and {p[m]i }i ∈N with w(ω) = 1/4 for ω ∈
[−1, 1]2. Analogously to section 2.3.1, we �rst consider the approximation error of
the Galerkin approach, evaluating the coe�cients with a numerical error negligible
with respect to the approximation error; then, we approximate the coe�cients, c̃Mi ,
via integration methods and analyze the numerical error. At the end of this section,
we provide some advice to set the di�erent parameters such that the numerical error
does not dominate the approximation error.
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Figure 2.9 Convergence history for Galerkin approach. Relative errors of the Galerkin approach
to compute the polynomial approximations α [t]P and α [m]P , for benchmarks in Example 2.5.

Approximation error

Figure 2.9 shows the convergence rates of the Galerkin approach approximation
error. In this simulation, the coe�cients have a negligible numerical error compared
to the approximation error, thanks to the advice given at the end of this section.
For both total and maximal degrees, the converge rates are analogous, and they
are of order O (

e−cPd
)

with c ∈ R+ \ {0}, O
(
P−1
d

)
and O

(
P−0.3
d

)
, for the smooth,

Lipschitz continuous, and continuous behaviors of the spectral abscissae function in
Example 2.5, respectively.

Numerical error

The coe�cients in the Galerkin approach can be approximated by integration
methods. To numerically integrate the left-hand side of (2.4), we consider bi-dimension
generalizations of the Clenshaw-Curtis quadrature rule, based on Chebyshev points.
These integration methods are based on the following set of points:

Tensor product Chebyshev grid is constructed by tensor product of (MC + 1) unidi-
mensional Chebyshev points. The total number of points is M + 1 = (MC + 1)2.
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Padua points are the self-intersections and boundary contacts of the generating curve
TMP (x) −TMP+1(y) = 0 for (x,y) ∈ [−1, 1]2, where TMP is the Chebyshev polynomial
of degree MP. The total number of points is M + 1 =

(MP+2
2

)
. Refer to [5, 12] for

further information on Padua points.

The approximation of an integral, obtained by integrating the interpolant of the
integrand, evaluated on the previous sets of points, leads to the following integration
methods [83].

Tensorial Clenshaw-Curtis cubature rule based on tensor product Chebyshev grid.

Non-tensorial Clenshaw-Curtis cubature rule relying on Padua points.

These methods approximate the coe�cients c̃ [t],Mi and c̃ [m],Mi and, hence, permit to
compute the polynomial approximations with respect to total and maximal degrees,
i.e. α [t],MP and α [m],MP , respectively. By the advice furnished in the next section, the
coe�cients c̃ [t],Mi are computed by non-tensorial Clenshaw-Curtis cubature rules on
M + 1 Padua points, while c̃ [m],Mi are evaluated by tensorial Clenshaw-Curtis cubature
rules on M + 1 tensor product Chebyshev grid.
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Figure 2.10 Convergence history for Clenshaw-Curtis cubature rules. Relative errors to compute
the �rst coe�cient c0 = c

[t]
0 = c

[m]
0 of (2.12) for benchmarks in Example 2.5. The approximations

c̃ [t],M0 , and c̃ [m],M0 are obtained by non-tensorial and tensorial Clenshaw-Curtis cubature rules,
respectively. The reference values are computed by M? > 5 · 105 which corresponds to MP = 999
and MC = 707.

In order to compute the numerical errors, c̃ [t],M
?

i and c̃ [m],M
?

i are considered as reference
values. These coe�cients are computed by the corresponding cubature rules based
on M? > 5 · 105 points, in particular MP = 999 and MC = 707. Figure 2.10 shows the
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error to compute the �rst coe�cient c̃M0 , which is independent from the multivariate
polynomial degree, since c [t]0 = c

[m]
0 . The cubature rules on tensor product Chebyshev

grid and Padua points present similar convergences rates. For Example 2.5, the
Lipschitz and continuous behaviors of the spectral abscissae converge as O (

M−2) and
O (

M−1.5) , respectively; while the smooth behavior present a convergence of order
O (

e−cM
)

with c ∈ R+ \ {0}.
In terms of a polynomial chaos expansion (Theorem 2.1), Figure 2.10 corresponds to
the error to compute the mean of the spectral abscissa α(ω) associated with (2.14),
where ω is a realization of ω, random vector uniformly distributed in Ω.

Decoupling numerical error with respect to approximation error

This section is based on numerical examples from which we conclude some novel
advice on how to set the number of points in the integration methods to accurately
compute the coe�cients of the Galerkin approach. Indeed, these integration methods
should consider a small number of points, M , which are still su�ciently large to
avoid the corruption of the approximation error by the numerical error, due to the
approximation of the integrals.

Since the coe�cients c̃i in (2.9) and (2.12) are determined by integratingα(ω)pi (ω)w(ω)
over the domain Ω, we request that the polynomial approximation behind the
integration rule is exact for all polynomials {pi }Pi=0.

This advice leads in the unidimensional case, section 2.3.1, that the number of nodes,
M+1, in the interpolatory quadrature rules, i.e. Gauss and Clenshaw-Curtis quadrature
rules, is greater than the degree, P , of the polynomial approximation αMP .

For the bi-dimensional case, the polynomial approximation behind the non-tensorial
Clenshaw-Curtis cubature rule, i.e. the interpolation on Padua points, is exact for
polynomial with total degree less than or equal to MP. The interpolant on tensor
product Chebyshev grid, underling the tensorial Clenshaw-Curtis cubature rule, is
exact for all the polynomials with maximal degree less than or equal to MC. From
these properties, the interpolatory cubature rule for D > 1 are associated with the
polynomial multivariate degree. In particular, non-tensorial and tensorial Clenshaw-
Curtis cubature rules are interpolatory cubature rules associated with the total and
maximal degrees for D = 2, respectively.

Following the advice, α [t],MP is accurately approximated by non-tensorial Clenshaw-
Curtis cubature rule with MP ≥ Pd or by tensorial Clenshaw-Curtis cubature rule with
MC ≥ Pd . On the other hand, α [m],MP can be evaluated by tensorial Clenshaw-Curtis
with MC ≥ Pd or by non-tensorial Clenshaw-Curtis cubature rule with MP ≥ 2Pd .
Therefore, the number of nodes in the integration rule is minimized by considering
non-tensorial Clenshaw-Curtis cubature rule for approximating the coe�cients of
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α [t],MP with MP ≥ Pd , and tensorial Clenshaw-Curtis cubature rule for approximating
the coe�cients of α [m],MP with MC ≥ Pd .

Table 2.2 Advice to compute Galerkin polynomial approximations (2.16) and (2.18), whose
coe�cients are evaluated by non-tensorial and tensorial Clenshaw-Curtis cubature rule, based on
Padua points and tensor product Chebyshev grid, respectively. The natural choices are highlighted.

Total degree α [t],MP Maximal degree α [m],MP

Padua points MP ≥ Pd MP ≥ 2 · Pd
M + 1 =

(MP+2
2

) ≥ P + 1 =
(Pd+2

2
)

M + 1 =
(2MP+2

2
) � P + 1 = (Pd + 1)2

Tensor product MC ≥ Pd MC ≥ Pd
Chebyshev grid M + 1 = (MC + 1)2 � P + 1 =

(Pd+2
2

)
M + 1 = (MC + 1)2 ≥ P + 1 = (Pd + 1)2
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Figure 2.11 Convergence history for Galerkin approach. Numerical and approximation errors
on the polynomial approximation for benchmarks in Example 2.5, using the two non-natural
choices of Table 2.2. The coe�cients c̃ [t],Mi and c̃ [m],Mi are computed by tensorial and non-tensorial
Clenshaw-Curtis cubature rules, respectively, where M > P is given by MC = 71 < 100 and
MP = 140 < 2 · 100.

Table 2.2 summarizes the advice for the bi-dimensional case, highlighting the natural
choices of computing the polynomial approximations α [t],MP and α [m],MP through
the associated interpolatory cubature rules. These natural choices provide the
convergence errors in Figure 2.9, where the coe�cients of α [t]P , α [m]P are evaluated
with MP = 110 non-tensorial and MC = 110 tensorial Clenshaw-Curtis cubature
rules, respectively. On the other hand, Figure 2.11 shows a counter check of this
advice for spectral abscissa polynomial approximations of Example 2.5. The number
of points of the cubature rules, M , is greater than the number of coe�cients, P ;
however, the polynomial approximation α [t],MP is computed by tensorial Clenshaw-
Curtis cubature with MC = 71 while the polynomial approximation α [m],MP is evaluated
by non-tensorial Clenshaw-Curtis cubature rule with MP = 140. The numerical errors∑

π −1
[t] (i)


1
≤Pd

���c [t],M?

i − c̃ [t],Mi

��� and
∑

π −1
[m](i)


∞
≤Pd

���c [m],M?

i − c̃ [m],Mi

��� , (2.19)
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heavily a�ect the approximation errors as soon as Pd ' MC = 71 for α [t],MP , and
Pd '

MP
2 = 70 for α [m],MP .

2.4.2 Collocation approach

Contrary to the Galerkin approach, where the coe�cients can be computed
independently one of each other with formula (2.4), in the collocation approach
the number of degrees of freedom, i.e. the P + 1 coe�cients, should match the number
of interpolation points. Hence the interpolant of total degree Pd , α [t]P , is computed
on Padua points with MP = Pd , while the interpolant of maximal degree Pd , α [m]P , is
evaluated on tensor products Chebyshev grid with MC = Pd . This connection between
interpolant polynomial degrees and the choice of interpolating points is strengthened
by the following theorem, which provides the near-best optimal approximation in
supremum norm associated with a multivariate polynomial degree.

Theorem 2.5 Let α [t]P
? and α [t]P be the best polynomial approximation of total degree

less than or equal to Pd and the polynomial interpolant on MP = Pd Padua points,
respectively. Then

α − α [t]P 
s ≤

(
1 + O(log2(Pd ))

) α − α [t]P ?

s
.

Analogously, if α [m]P
?, and α [m]P , are the best polynomial interpolant of maximal degree

less than or equal to Pd and the polynomial interpolant on MC = Pd tensor product
Chebyshev grid, respectively, then

α − α [m]P


s ≤

(
1 + O(log2(Pd ))

) α − α [m]P
?

s
.

The near-best optimality is derived by the growth of the Lebesgue constant [5].
Moreover, the following theorem [12] extends the error bounds of Theorem 2.4 for
total degree polynomial interpolant evaluated in Padua points.

Theorem 2.6 If α is continuous and di�erentiable up to the k-th derivative in [−1, 1]2,
with k > 0, then the interpolant α [t]P on MP = Pd Padua points satis�es the following
relation α − α [t]P 

s ≤ O
(
P−kd log2(Pd )

)
.

Theorem 2.6 provides an error bounds only for the smooth behavior of the spectral
abscissa, ensuring a convergence faster than O(P−kd ) for all k ∈ N.

The experiments on the spectral abscissa functions of Example 2.5 are shown in
Figure 2.12. The convergence rates are analogous to the ones of the Galerkin
approach (Figure 2.9), the only di�erence is that the numerical error is negligible
for the collocation approach. The interpolant polynomials for these experiments are
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computed by the software Chebfun relying on Chebyshev expansion. Analogously to
Remark 2.5, the Chebyshev coe�cients can be transformed into Legendre coe�cients
by the method [88], in order to apply Theorem 2.1.
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Figure 2.12 Convergence history for collocation approach. Relative errors for benchmarks in
Example 2.5 on the interpolant polynomials, based on Padua points for total degree and tensor
product Chebyshev grid for maximal degree.

2.5 Beyond polynomial (chaos) approximations

Dominant eigenvalue functions are often unsuitable for polynomial and polynomial
chaos approximations, especially in system and control applications where non-
di�erentiable and even non-Lipschitz continuous behaviors are expected or favored,
as described in section 2.1 and illustrated by the non-smooth behaviors of Exam-
ples 1.4 and 2.5. In this context, also piecewise-polynomial approximation [75] and
enriched polynomial approximation [28] are not expected to provide satisfactory
solution, since the location of the discontinuities is not known a priori; and for
stochastic dimension D > 1, the geometry of non-di�erentiable points within the
parameter space Ω is not well understood.

For large-scale eigenvalue problems, obtaining an accurate polynomial (chaos) approx-
imations of non-smooth dominant eigenvalue functions becomes computationally
infeasible. Therefore, approximations potentially better tailored to the behavior
of dominant eigenvalue functions are constituted by projection methods, in which
a large-scale parametric eigenvalue problem is projected into a small one. This
has the advantage that the approximation is still in the form of the solution of an
eigenvalue problem, inheriting all properties, and able to preserve the non-smooth
spectral abscissa behaviors. Projection methods are reliably applied in eigenvalue
computations and model order reduction [58], as well as eigenvalue optimization [43].
However, their potential for global approximations of dominant eigenvalue functions
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and for the computation of statistical information has been considered only for linear
eigenvalue problem with parametric symmetric matrices [72].

In what follows, we project a generalized eigenvalue problem A(ω)v = λB(ω)v ,
whereA(ω), B(ω) are two non-singular parametric matrices, into the subspace formed
by left and right eigenvectors associated with the rightmost eigenvalues for given
ω ∈ {ωm}m ⊂ Ω. The eigenvalues of the projected eigenproblem provide an Hermite
interpolation of the dominant eigenvalues of the original problem at ω ∈ {ωm}m , as
stated in the following proposition, which extends to generalized eigenvalue problem
the results in [73, 43].

Proposition 2.7 LetV andU be matrices whose column space respectively contains the
right and left eigenvectors associated with the dominant eigenvalue of A(ω)v = λB(ω)v
for ω ∈ {ωm}m ⊂ Ω. For each ω ∈ {ωm}m , if the dominant eigenvalue λD is simple and
the matrices A(ω), and B(ω) are di�erentiable towards ω, then an eigenvalue λ of the
projected eigenproblem U ∗A(ω)V ṽ = λU ∗B(ω)V ṽ interpolates the original rightmost
eigenvalue, and also its derivative with respect to the elements of parameter vector ω.

Proof. For notational convenience, set ω ∈ {ωm}m and consider A(ω) = A, B(ω) = B.
The left and right eigenvectors associated with the dominant eigenvalue λD can be
rewritten by using the matrices U and V , namely vD = V ṽ and uD = Uũ. Therefore,
the interpolation of the dominant eigenvalue is given by:

λDU
∗BV ṽ = U ∗λDBvD = U

∗AvD = U
∗AV ṽ .

Analogous result holds for the derivative of the dominant eigenvalues with respect
to an element ω̂ of the parameter ω. Applying Proposition 1.4 to the generalized
eigenvalue problem Λ(λ;ω) = λB(ω) −A(ω), we get

∂λD

∂ω̂
=
u∗D

∂(λDB−A)
∂ω̂ vD

u∗DBvD
=
ũ∗U ∗

(
λD

∂B
∂ω̂ − ∂A

∂ω̂

)
V ṽ

ũ∗U ∗BV ṽ
=
ũ∗ ∂(λDU ∗BV−U ∗AV )

∂ω̂ ṽ

ũ∗U ∗BV ṽ
,

which concludes the proof. �

Remark 2.7. For symmetric eigenvalue problems, the interpolation properties hold
in a stronger sense, i.e. for ω ∈ {ωm}m the dominant eigenvalue of the original
eigenproblem is also the dominant eigenvalue of the projected eigenproblem [72,
Property 1]. However, for general real-valued matrices, A(ω), B(ω), the projected
eigenproblem may present a dominant eigenvalue that does not correspond to the
dominant eigenvalue of the original problem. To stress this concept, the left and right
eigenvectors ũ and ṽ , associated with the eigenvalue λD for the projected eigenvalue
problem, are denoted without the subscript D in the proof of Proposition 2.7.

To illustrate the idea, we consider the generalized parametric eigenvalue problem (1.19)
obtained from the in�nite-dimensional linear eigenvalue problem associated with the
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Figure 2.13 Comparison between the dominant eigenvalues’ real parts of the eigenproblem (1.19)
and of its projection for the hot-shower problem (1.24) with K = e−1 and ω ∈ [−0.1, 0.1]. The
eigenproblem (1.19) considers M = 100 collocation points, and its 5 × 5-projection is based on the
left and right eigenvectors of the rightmost eigenvalues in the randomly selected points ω1, ω2, and
ω3. The relative error of the projected spectral abscissa function in the L∞ norm is 5.7835 · 10−9.

hot shower problem 9x(t) = − (
e−1 + ω

)
x(t − 1) with ω ∈ [−0.1, 0.1]. This generalized

eigenvalue problem, obtained considering 100 collocation points, has dimension 100
by 100 and depends on the scalar parameter ω. As observed in Example 1.4, the
spectral abscissa function presents a non-Lipschitz continuous behavior, since for
ω = 0 there is a non-semi simple dominant characteristic root with multiplicity 2. We
project the generalized eigenproblem into the left and right eigenvectors associated
with the rightmost eigenvalues in 3 random points of the interval [−0.1, 0.1]; the
projected 5×5 eigenproblem approximates the behaviors of the rightmost eigenvalues
of the delay system, as shown in Figure 2.13. In order to have a real-valued projected
eigenvalue problem, if the rightmost characteristic root presents non-zero imaginary
part forω ∈ {ωm}m , the real matricesV andU are constructed considering real as well
as imaginary parts of the left and right eigenvectors associated with this dominant
characteristic root.

The spectral abscissa L∞ relative error for the projected eigenproblem is 5.7835 · 10−9,
six orders of magnitude less than the polynomial approximation obtained by the
collocation approach with 100 points (the convergence rate of the interpolant
polynomial for this example is illustrated in Figure 2.14). In addition, the
approximation obtained by the projection is computed faster than evaluating a
high degree polynomial approximation; as a result the small size of the projected
eigenvalue problem provides a fast surrogate model, which can be used to infer
statistical information.
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Figure 2.14 Convergence history for the collocation approach. Relative errors to polynomially
interpolate on Chebyshev points the spectral abscissa of eigenproblem (1.19), considering M = 100
collocation points, for the hot shower problem (1.24) with K = e−1 and ω ∈ [−0.1, 0.1].

Summary. A non-smooth behavior of the spectral abscissa function is generally due
to multiple rightmost eigenvalues, counted with multiplicity. These non-di�erentiable
behaviors, often encountered in control application, heavily a�ect the polynomial
approximation, which is strictly connected to the polynomial chaos theory. Numerical
experiments on spectral abscissa non-smooth behaviors systematically show a slow
decay rate for the approximation errors of the Galerkin and collocation approaches as
well as for the numerical errors due to the integral approximation of the polynomial
coe�cients. These experiments also suggest that the Galerkin approach numerical
errors do not a�ect the polynomial approximation, if the the integration rule exactly
integrates all the polynomials of the truncated polynomial basis.
Extended research results of chapter 2 are presented in section 5.1.1.



3
Probabilistic
Stability optimization

This chapter provides a novel stabilization method for linear time-invariant time-delay systems
with uncertain parameters modeled by a random vector. The dependence of the system matrices
on these uncertain parameters can be nonlinear and the delays can also be subjected to
uncertainty. Relying on a minimization of the mean of the spectral abscissa with a variance
penalty, the proposed approach provides better robustness properties compared to the spectral
abscissa optimization for the nominal model, and more realistic results in contrast to worst-
case analysis. The e�cacy and applicability of the method is shown by several numerical
examples, including an experimental heat-exchanger, and a mechanical system to which a
delayed resonator is attached in order to absorb harmonic oscillations.

Analogously to the previous chapter, for simplicity, we deal with linear autonomous
time-delay systems (1.4) stated as delay di�erential algebraic equations

E 9x(t) =
h∑
j=0

Aj (ω,K)x(t − τj (ω)), (3.1)

where

• x(t) ∈ Rr represents the state at time t ≥ maxω ∈Ω{−τj (ω) : j = 0, . . . , h};
• ω ∈ Ω ⊂ RD are the possible values of the uncertain parameters, which are

described by the continuous real random vector ω with compact support Ω and
probability density function

w : Ω → R+, ω 7→ w(ω).
For the sake of simplicity, the probability density function w is smooth, and the
support is the D-dimensional unit cube, Ω = [0, 1]D ;

• K ∈ Rk parametrizes the controller;

• E ∈ Rr×r is a real matrix, which can be singular;

• For every j ∈ {0, . . . ,h}, Aj : Ω×Rk → Rr×r , (ω,K) 7→ Aj (ω,K), and τj : Ω →
R+, ω 7→ τj (ω) are functions, which we assume to be smooth.
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The delay di�erential algebraic formulation (3.1) permits to model a wide class of
system with feedback control, such that the plant is{

9z(t) = ∑h
j=0 Fj (ω)z(t − τj (ω)) +

∑h
j=0G j (ω)u(t − τj (ω)),

y(t) = ∑h
j=0 Hj (ω)z(t − τj (ω)) +

∑h
j=0 Lj (ω)u(t − τj (ω)),

(3.2)

where z(t), u(t) and y(t) are respectively the state, the input, and the output at time t ,
and the feedback controller can be either static or dynamic, in formula

Static u(t) =
h∑
j=0

L̂jy(t − τj (ω)), (3.3a)

Dynamic
{
9zc (t) =

∑h
j=0 F̂jzc (t − τj (ω)) +

∑h
j=0 Ĝ jy(t − τj (ω)),

u(t) = ∑h
j=0 Ĥjzc (t − τj (ω)) +

∑h
j=0 L̂jy(t − τj (ω)).

(3.3b)

System (3.2) with feedback controller (3.3) can be recast as a delay di�erential algebraic
equation (3.1), imposing x = (zT yT zT

c u
T)T ∈ Rr and K ∈ Rk the vectorization of the

controller matrices F̂i , Ĝi , Ĥi , and L̂i .

Assuming that the plant or the controller is strictly proper, i.e. either the matrices Lj
or L̂j are zero for every j = 0, . . . ,h, the resulting delay di�erential algebraic equation
is of retard type, i.e. equivalent to the linear time-delay system (1.4). In particular, the
delay di�erential equations (3.1) arising from a strictly proper system (3.2)–(3.3) are
always of index 1.4 We focus on this particular class of delay di�erential algebraic
equations, since their stability properties are analogous to the autonomous time-
delay system, considered in section 1.1.2. Indeed, for a given (ω,K) ∈ Ω × Rk the
stability properties of the delay di�erential algebraic equation of retarded type (3.1)
are determined by the characteristic roots λ ∈ C, eigenvalues with �nite modulus of
the characteristic matrix

A(λ;ω,K) = λE −
h∑
j=0

Aj (ω,K)e−λτj (ω).

Analogously to autonomous time-delay system, delay di�erential algebraic equations
of retarded type always have �nitely many characteristic roots in any right half-plane,
which can be computed by adapting Algorithm 1.1 to handle the singular leading
matrix E, as described in [51, Section 4.1]. Similarly to Proposition 1.2, the delay
di�erential equation equations of retarded type (3.1) are asymptotically stable if and
only if the spectral abscissa,

α(ω,K) := max
λ∈C
{Re(λ) : det (A(λ;ω,K)) = 0} ,

is strictly negative. For every (ω,K) ∈ Ω × Rk , we consider the spectral abscissa as
the real part of a dominant characteristic root λD ∈ C such that Re(λD) = α(ω; K) and
Im(λD) ≥ 0.
4 Further information on delay di�erential algebraic equations can be found in [13, 31, 17].
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To develop the novel approach, we need the following assumption on the simplicity
of the dominant characteristic root, which is not restrictive from the application point
of view.

Assumption 3.1. Given K ∈ Rk , the dominant characteristic root is simple for almost
all ω ∈ Ω; given ω ∈ Ω, the dominant characteristic root is simple for almost all
K ∈ Rk .

Example 3.1. Let us recall the hot shower problem (1.24), analyzed in section 1.2.1.
For this autonomous time-delay system, we can make the plant (3.2) and the static
feedback controller (3.3a) explicit by rewriting system (1.24) in the form



9z(t) = −ωz(t − 1) − u(t − 1),
y(t) = z(t),
u(t) = Ky(t),

(3.4)

where ω models the uncertainty and K ∈ R is the feedback gain. Hence, this system
can be represented as a delay di�erential algebraic equation of retarded type (3.1)

©«
1 0 0
0 0 0
0 0 0

ª®¬
9x(t) = ©«

0 0 0
1 −1 0
0 K 1

ª®¬
x(t) − ©«

ω 0 1
0 0 0
0 0 0

ª®¬
x(t − 1). (3.5)

Formulations (1.24) and (3.5) are almost equivalent, presenting the same characteristic
roots λ ∈ C, even though the latter system is not scalar.

Our goal is to generalize the spectrum-based stability optimization considered in
section 1.1.4 in order to exploit the probabilistic description of the uncertainty, modeled
by the random vector ω. To this end, we minimize a speci�c linear combination of
mean and variance of the spectral abscissa, in formula

min
K∈Rk

fobj(K), with fobj(K) = E(α(ω,K)) + κV(α(ω,K)), (3.6)

where κ ∈ R+ is a given trade o� parameter. The mean and the variance of the
spectral abscissa, respectively denoted by E(α(ω,K)) and V(α(ω,K)) exist, as proven
in section 2.2 for given K ∈ Rk . If the support of ω is a single element of RD , i.e.
Ω = {ω} with ω ∈ RD , then the minimization of the objective function (3.6) reduces
to the spectral abscissa optimization, described in section 1.1.4, since in this case
E(α(ω,K)) = α(ω,K) and V(α(ω,K)) = 0.

The chapter is structured as follows. In section 3.1, the objective function is analyzed,
studying its di�erentiability and its approximation obtained by integration methods.
Then, in section 3.2, we outline the novel stability optimization method, based on
approximation and minimization of the objective function (3.6) handled respectively by
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quasi-Monte Carlo method and the software HANSO. We end, in section 3.3, with some
numerical examples and two engineering applications. Indeed, the novel approach is
successfully applied to an experimental heat-transfer set up, in section 3.3.4, and to a
mechanical system with active vibration suppression, in section 3.3.5

We remind that, analogously to the notation of chapter 2, the random variables
modeling uncertainty are denoted with bold letters, e.g. ω, while the normal font is
used to indicate their realizations, ω ∈ Ω. In this view, given K ∈ Rk , α(ω,K) is a
random variable, while α(·,K) : Ω → R, ω 7→ α(ω,K) is a function with respect to
the realization ω ∈ Ω.

3.1 Objective function, analysis & evaluation

The existence of the objective function (3.6) for every K ∈ Rk follows from the
existence of the mean and variance, already proved in section 2.2. In this section, we
�rst address the di�erentiability of the objective function, studying the integrability
of the spectral abscissa gradient with respect to controller parameters. Then, we
analyze integration methods to approximate the objective function and its gradient.

3.1.1 Di�erentiability of the objective function

Since we are dealing with a minimization problem, the gradient of the objective
function can be used as search direction for the optimization. However, the objective
function (3.6) is a linear combination of integrals depending on the spectral abscissa,
whose behavior is not always di�erentiable, as illustrated in section 2.1.

For this reason, we �rst derive an explicit formula for the gradient of the objective
function, under the assumption that the gradient of the spectral abscissa function is
integrable over the uncertain domain Ω. Then, we analyze when this latter assumption
holds.

Proposition 3.1 If the gradient of the spectral abscissa with respect to the control
parameters K is an integrable function on Ω, then the gradient of objective function (3.6)
exists and it can be expressed by

∇K fobj(K) = (1 − 2κE(α(ω,K)))E(∇Kα(ω,K)) + 2κE(α(ω,K)∇Kα(ω,K)). (3.7)

Proof. The objective function is a linear combination of integrals (2.6); therefore its
gradient with respect to K is the gradient of the linear combination of these integrals.
By the continuity of the spectral abscissa, section 2.1, and the compactness of the
domain Ω, the function α(ω,K) is integrable over Ω. Providing that ∇Kα(ω,K) is also
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integrable over Ω, we can di�erentiate the integrals [87]. Hence, almost everywhere
in Ω, the gradient of the mean and of the variance with respect to K are

∇KE(α(ω,K)) = E(∇Kα(ω,K)),

∇KV(α(ω,K)) =
∫
Ω

2 (α(ω,K) − E(α(ω,K))) ∇K (α(ω,K) − E(α(ω,K)))w(ω)dω

= 2E(α(ω,K)∇Kα(ω,K)) − 2E(α(ω,K))E(∇Kα(ω,K)).
The gradient of the objective function is well de�ned and can be expressed by (3.7). �

The validity of the assumption of Proposition 3.1 for delay di�erential algebraic
equations of retarded type (3.1) is �rst analyzed in a particular setting and then
generalized. Indeed, �rst, we demonstrate the integrability of the spectral abscissa
gradient when the control parameters K are a�ected by uncertainties. Then, we
consider the general case, proving, under a Lipschitz continuous condition on the
spectral abscissa, that the spectral abscissa gradient is integrable. Moreover, we
present a case-study, where the spectral abscissa is not Lipschitz continuous, but its
gradient is still integrable.

A particular case: the control parameters are uncertain

Let the length of the vector K be less or equal to the stochastic dimension, i.e. k ≤ D.
The following proposition states that if all control parameters in K are a�ected by
uncertainty then the hypothesis of Proposition 3.1 is satis�ed.

Proposition 3.2 Let the components of ω be recast as ω = (ω̃, ω̂), where ω̃ and ω̂ are
random vectors with D − k and k components respectively. For i = 1, . . . ,k , if ω̂i occurs
only in the coe�cients of the matrices {Aj (ω,K)}hj=0 of system (3.1), whereKi occurs, and
if these coe�cients can be recast as functions of Ki + ω̂i , then function ω 7→ ∇Kα(ω,K)
is an integrable function on Ω, for all K ∈ Rk .

Proof. By assumption, the spectral abscissa function can be recast as

α(ω,K) = β(ω̃,K + ω̂),
for some continuous function β . We prove the proposition considering the di�erent
behaviors of the spectral abscissa analyzed in section 2.1.

If the spectral abscissa presents a smooth behavior, then it is di�erentiable, and we
can apply the chain rule to its partial derivative with respect to Ki

∂β(ω̃,K + ω̂)
∂Ki

=
∂β(ω̃,K + ω̂)
∂ω̂i

, for all i = 1, . . . ,k . (3.8)

Clearly this continuous function is integrable over the compact set Ω.
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If the spectral abscissa presents a Lipschitz continuous behavior, then its partial
derivate exhibits a discontinuity in a set of measure zero, but it is of bounded variation
on Ω. Hence, it is integrable also in this case.

If the spectral abscissa presents a continuous behavior, due to multiple non-semi-
simple dominant characteristic roots, we consider the partial derivative of the spectral
abscissa with respect to Ki , for all i = 1, . . . , k and we stress only the ω̂i -dependency
in the characteristic roots. The e�ects of the uncertainty on Ki can be seen as a real
linear perturbation on some matrix coe�cients, describing the system. Let λ(ω̂0

i ) be
an isolated dominant characteristic root with partial multiplicity (`1, . . . , `l ). Then
in a neighborhood of ω̂0

i , Ξ, the spectrum of A(λ;ω,K) presents L = `1 + . . . + `l
eigenvalues, λ`(ω̂i ) with ` = 1, . . . ,L , counted with multiplicity, such that λ`(ω̂i )
are algebraic functions of ω̂i by the Weierstrass preparation theorem, and can be
represented by branches of Puiseux series

o1(ω̂i ) = λ(ω̂0
i ) + c1(ω̂i − ω̂0

i )1/~1 + O
(
(ω̂i − ω̂0

i )2/~1
)
, 1 = 1, . . . ,G, ~1 ∈ N, ω̂i ∈ Ξ,

where c1 ∈ C, ~1 ≥ . . . ≥ ~G and ~1 + . . . + ~G = L [36].

In Ξ \ {ω̂0
i }, applying (3.8), the partial derivative of the spectral abscissa with respect

to Ki behaves as the real part of ∂o1(ω̂i )/∂ω̂i for some 1 ∈ {1, . . . , G}, which are
integrable on Ξ. Without loss of generality, Ξ is contained in the ω̂i -projection of Ω,
and hence ∂α (ω ,K)

∂Ki
is integrable for all i = 1, . . . ,k . �

Systems, which satisfy the assumptions of Proposition 3.2, consider uncertainty on
the implemented feedback control in the optimization problem. The hot shower
problem (1.24), analyzed in section 1.2.1, satis�es the conditions of Proposition 3.2
since the uncertainty ω a�ects the controller parameter K . However, in applications,
the accuracy of the feedback control is usually high with respect to the uncertainty
on the other system parameters, and therefore we need to consider the more general
case.

General case

In the previous case, summarized in Proposition 3.2, we di�erentiate α(ω,K) with
respect to the integration variable ω, by applying (3.8). In the more general setting,
however, we are di�erentiating with respect to the controller K and we are integrating
over the uncertain parameters ω on Ω. In this context the following theorem states
that, under a Lipschitz condition, ∇Kα(ω,K) is integrable on Ω.

Theorem 3.3 If for some L > 0, the function α(ω, ·) : Rk → R, K 7→ α(ω,K) is locally
Lipschitz in K at K = K0, with Lipschitz constant L, for all ω ∈ Ω, then the gradient of
the spectral abscissa is integrable on Ω at K = K0, and, consequently, ∇K fobj(K) exists
at K = K0.
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Proof. Let k ⊂ Rk denote the neighborhood of K0 such that α(ω, ·) restricted to k is
Lipschitz continuous for all ω ∈ Ω. In order to obtain the result, we need to prove
that ∂α (ω ,K0)/∂Ki is integrable on Ω, for i = 1, . . . ,k and then apply Proposition 3.1.
Denoting by ei the i-th column vector of the identity matrix Ik ∈ Rk×k , for all δ ∈ R
such that K0 + δei ∈ k, the Lipschitz continuity assumption ensures that

|α(ω,K0 + δei ) − α(ω,K0)| ≤ L|δ |, for all ω ∈ Ω.

By Assumption 3.1, the spectral abscissa is almost everywhere di�erentiable on Ω,
hence, we obtain����∂α(ω,K0)

∂Ki

���� = lim
δ→0

|α(ω,K0 + δei ) − α(ω,K0)|
|δ | ≤ L,

almost everywhere on Ω. Since ∂α (ω ,K0)/∂Ki exists almost everywhere on the compact
set Ω and is bounded on Ω, we arrive at the assertion. �

We remind that the spectral abscissa is locally Lipschitz in both ω and K (and hence
Theorem 3.3 holds) when the dominant characteristic roots are (semi)-simple, i.e. in
the smooth and Lipschitz behaviors of the spectral abscissa. However, we are not able
to prove for the general continuous behavior of the spectral abscissa that the gradient
of the objective function (3.7) always exists, even though we have strong indication
that this property holds, as motivated by the following case-study.

Example 3.2. Let us consider a delay system with stochastic dimension D = 1
and Ω = [−1, 1], such that for ω = 0 the rightmost eigenvalue λ0 is non-semi-
simple with algebraic multiplicity ` > 1 and geometric multiplicity equal to 1.
Assume moreover that the complete regular splitting property holds for ω = 0,
i.e. u∗0

∂A(λ0;0,K)
∂ω v0 , 0, where u0 and v0 are the left and the right eigenvectors

corresponding to λ0, respectively.

By Assumption 3.1, there exists an open interval (a,b) with a < 0 < b where the
eigenvalue λ(ω) is isolated, except for ω = 0. If we restrict to the interval (0,b),
λ(ω) and its right and left eigenvectors, v(ω) and u(ω) respectively, admit a Puiseux
expansion at 0 [53], in formula

λ(ω) = λ0 +
∞∑
i=1

ω
i/`λi , v(ω) = v0 +

∞∑
i=1

ω
i/`vi , u(ω) = u0 +

∞∑
i=1

ω
i/`ui .

Moreover, the partial derivative with respect to λ of the characteristic matrix,
∂A(λ;ω ,K)/∂λ, can be expressed with a Taylor expansion in increasing powers of ω i/` ,
exploiting the Puiseux series of λ(ω),

∂A(λ;ω,K)
∂λ

=
∂A(λ0; 0,K)
∂λ

+
∂2A(λ0; 0,K)
∂λ2 λ1ω

1/` + O
(
ω

2/`
)
.
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By the smoothness properties of the system matrices of (3.1), A(λ;ω,K) behaves
smoothly with respect to K and then ∂A(λ;ω ,K)/∂Ki is bounded for all i = 1, . . . ,k .
Therefore, u(ω)∗ ∂A(λ;ω ,K)

∂Kj
v(ω) is bounded since u0 and v0 are well de�ned and

�nite. In addition, since λ0 is not semi-simple, we get u∗0
∂A(λ0;0,K))

∂λ v0 = 0. Hence,
Proposition 1.4 suggests the following behavior for the derivative of the rightmost
eigenvalues with respect to Ki for i = 1, . . . ,k as a function of ω ∈ (0,b):

∂λ(ω)
∂Ki

=
−u(ω)∗ ∂A(λ;ω ,K)

∂Ki
v(ω)

ω1/`
(
u∗1

∂A(λ0;0,K)
∂λ v0 + u∗0

∂2A(λ0;0,K)
∂λ2 λ1v0 + u∗0

∂A(λ0;0,K)
∂λ v1

)
+ O (

ω2/` ) .

Hence, ∂α (ω ,K)/∂Ki behaves as ω−1/` in (0,b), if

u∗1
∂A(λ0; 0,K)
∂λ

v0 + u
∗
0
∂2A(λ0; 0,K)
∂λ2 λ1v0 + u

∗
0
∂A(λ0; 0,K)
∂λ

v1 , 0.

Analogous result holds in the interval (a, 0), providing that the gradient of the spectral
abscissa with respect to K is integrable in a neighborhood of ω = 0. Hence, for
Proposition 3.1, the gradient of the objective function (3.7) exists.

3.1.2 Approximation of the objective function and its gradient

The objective function (3.6) and its gradient (3.7) are formulated in terms of integrals,
whose integrands might be non-di�erentiable, and might even admit unbounded
discontinuities, considering the objective function gradient. This lack of smoothness
heavily a�ects integration methods, as analyzed in chapter 2 and illustrated in
Figures 2.6 and 2.10.

In our implementation, the numerical integration to approximate the objective
function and its gradient is accomplished by the quasi-Monte Carlo method [15, 62, 11].
Relying on low-discrepancy (or quasi-random) sequences, the quasi-Monte Carlo
integration is almost as accurate as the standard Monte Carlo method, based on
random or pseudo-random sequence, but it improves the convergence rate of standard
Monte Carlo method, if the integrand is of bounded variation [11]. Moreover,
compared to interpolatory cubature rules analyzed in section 2.4.1, the number of
points considered by quasi-Monte Carlo methods does not depend exponentially with
respect to the stochastic dimension D.

We construct a set of M quasi-random points, {ξm}Mm=1, uniformly distributed in the
D-dimensional unit cube Ω, using Halton sequences up to stochastic dimension D = 6,
and the Sobol sequences for higher stochastic dimensions, as suggested by [62]. Given
the quasi-random points, {ξm}Mm=1 ⊂ Ω, the quasi-Monte Carlo approximation of the
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objective function evaluated for every K ∈ Rk is given by

fobj(K) ≈ 1
M

M∑
m=1

(
α(ξm,K) + κα(ξm,K)2

)
w(ξm) − κ

M2

(
M∑

m=1
α(ξm,K)w(ξm)

)2

, (3.9)

where α(ξm,K) is a realization of the random variable α(ω,K), computed by an
adaptation of Algorithm 1.1 to handle a leading matrix E, given (ξm,K) ∈ Ω × Rk .

The spectral abscissa α(ω,K) is not di�erentiable in a set of measure zero for (ω,K) ∈
Ω × Rk . However, from a computational point of view, we compute the spectral
abscissa at only a �nite number of points, {ξm}Mm=1 ⊂ Ω, where we can expect α(ω,K)
to be di�erentiable. Therefore, analogously to (3.9), the gradient of the objective
function (3.7) is approximated by a quasi-Monte Carlo method,

∇K fobj(K) ≈
(
1 − 2κ

M

M∑
m=1

α(ξm,K)w(ξm)
) (

1
M

M∑
m=1
∇Kα(ξm,K)w(ξm)

)
+

+
2κ
M

M∑
m=1

α(ξm,K)∇Kα(ξm,K)w(ξm).

where ∇Kα(ξm,K), given (ξm,K) ∈ {ξm}Mm=1 × Rk , is computed by adapting
Algorithm 1.2 to handle the leading matrix E.

The gradient of the spectral abscissa is, under mild conditions, integrable over Ω,
but if in Ω there are non-semi-simple dominant characteristic roots, then it might
not be square integrable. Indeed, in Example 3.2, if the rightmost eigenvalue λ0 has
algebraic multiplicity ` = 2, then ∂α (ω ,K)/∂Ki behaves as ω−1/2 for every i = 1, . . . , k .
The non-square integrability of the integrand represents a di�cult case for numerical
integration methods, since there is no theoretical convergence bound even for the
Monte Carlo method [11]. However, the following experiments on the approximation
of the objective function and its gradient by quasi-Monte Carlo method show that for
the di�erent behaviors of the spectral abscissa, analyzed in section 2.1, the convergence
rate is at least O (

M−0.5) , which is the usual convergence rate of the Monte Carlo
method.

Example 3.3. Analogously to Example 3.1, the oscillator with feedback delay (2.14),
considered in Example 2.5, can be rewritten as a system (3.2) with static feedback
controller (3.3a)



9z1(t) = z2(t),
9z2(t) = −ω2

1z1(t) − 2ω1ω2z2(t) + u(t − 1),
u(t) = K1z1(t) + K2z2(t),

(3.10)

and can be recast as a delay di�erential algebraic equation of retarded type (3.1).
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We consider the angular frequencies ω1 and the damping ratio ω2 realizations
of independent random variables, uniformly distributed in [0.9, 1.1] and [0.1, 0.2],
respectively. For the di�erent behaviors of the spectral abscissa, characterized by
the controllers (K1,K2) given in Table 2.1, Figure 3.1 shows the convergence rate
of quasi-Monte Carlo method to approximate the objective function (3.6) and its
gradient (3.7), increasing the numberM of quasi-random points {ξm}Mm=1. In particular,
for the three di�erent behaviors, the mean and the variance of the spectral abscissa
converges as O (

M−1) . A similar convergence rate is achieved for the gradient of
the mean and of the variance, when the spectral abscissa behaves smoothly. On
the other hand, when the partial derivative of the spectral abscissa admits bounded
and unbounded discontinuities (when the spectral abscissa presents a Lipschitz and
continuous behaviors, respectively), the gradient of the mean and of the variance
converge as O (

M−0.5) .
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Figure 3.1 Relative errors to approximate by quasi-Monte Carlo method the di�erent quantities,
describing the objective function (3.6) and its gradient (3.7), for system (3.10) with feedback
controllers given in Table 2.1. The reference values are computed with M = 5 · 105 quasi-random
points.

Remark 3.1. In this section, the objective function (3.6) and its gradient (3.7) are
considered as integrals approximated by a quasi-Monte Carlo method. However, they
can also be interpreted as linear combination of statistical quantities, like mean and
variance. If these underlying statistical moments are approximated by a relative small
number of samples, then it is preferable to consider unbiased estimators [15], which
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present di�erent formulas with respect to the ones considered in this section, except
for the particular case with κ = 0.

3.2 Optimization problem

A �rst important property of the objective function (3.6), regarding its optimization,
is that it is non-convex and hence may have many local minima. Indeed, the non-
convexity is carried over from the deterministic to the stochastic problem; the analysis
on the deterministic stability optimization can be found in section 1.1.4.

Moreover, we are theoretically dealing with an objective function which is everywhere
di�erentiable under mild assumptions, hence obtaining a smoother optimization
problem than the deterministic spectral abscissa optimization problem. However the
quasi-Monte Carlo method, approximating the linear combination of the integrals (2.6)
through the formula (3.9), leads to a non-smooth objective function, which is more
regular than the spectral abscissa but presents further local minima, as illustrated
in Example 3.4 and in Figure 3.2a. Indeed, by the discretization of the integral, the
smoothing e�ect of the integrals is lost.
Example 3.4. Let us consider the hot shower problem (3.5), and let us assume that
ω is a realization of a random vector ω uniformly distributed in [−0.1, 0.1]. We
analyze the e�ects on the quasi-Monte Carlo discretization of the mean of the spectral
abscissa, E(α(ω,K)) for K ∈ [0.2, 0.6], which corresponds to the discretization (3.9)
of the objective function (3.6) with trade o�-parameter κ = 0.

Figure 3.2 shows the approximated mean of the spectral abscissa obtained by M
spectral abscissa functions {α(ξm,K)}Mm=1 for controller parameter K ∈ [0.2, 0.6],
where {ξm}Mm=1 are M equidistant points in [−0.1, 0.1]. The objective function is
di�erentiable for all K ∈ [0.2, 0.6] while its numerical approximation on {ξm}Mm=1
presents non-di�erentiable points whenever one of the spectral abscissae α(ξm,K) is
non-Lipschitz continuous. However, the approximated fobj(K) is more regular than
the associated spectral abscissa functions. Indeed, the non-smooth behaviors of a
spectral abscissa function α(ξm̂,K) is averaged with the smooth behavior of the other
spectral abscissa functions α(ξm,K), withm , m̂. Therefore, increasing the number
M of sample points {ξm}Mm=1, we expect a smoother behavior of the objective function,
as illustrated in Figure 3.2b, similar to the theoretical one, illustrated in Figure 1.7.

It is important to note that this example stresses a pessimistic locally non-Lipschitz
behavior of the (discretized) objective function. Indeed, the robust stability
optimization (3.6) usually drives the iterations away from non-Lipschitz continuous
behavior of the spectral abscissa.

The properties of the optimization problem require software which can deal with non-
convex and non-smooth unconstrained minimization, analogous to the deterministic
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Figure 3.2 Approximated mean of the spectral abscissa for the hot shower problem (3.5). The
approximated mean is obtained by M spectral abscissa functions {α(ξm,K)}Mm=1 for K ∈ [0.2, 0.6]
with {ξm }Mm=1 equidistant points in [−0.1, 0.1].

case analyzed in section 1.1.4. For this reason, also for the probabilistic objective
function (3.6), the optimization is handled by the MATLAB code HANSO (Hybrid
Algorithm for Non-Smooth Optimization), described in [64].

However, an accurate approximation of fobj and ∇K fobj is computationally demanding.
Therefore, we focus on a deterministic description of the random parameters ω,
�xing a set {ξm}Mopt

m=1 of Mopt realizations in Ω, as explained in section 3.1.2. Hence,
the objective function and its gradient are always computed on {ξm}Mopt

m=1 during the
optimization method, so that the �uctuations induced by the realizations of ω do not
a�ect the accuracy of the solver, and in order to reduce the computational time of the
overall algorithm.

To evaluate the optimal gain value K ∈ Rk , the HANSO algorithm is initialized by
default on 10 random starting point. The local optimality of the returned solutions is
tested by computing the gradient of the objective function on a re�ned grid {ξm}Mpost

m=1 ,
with Mpost � Mopt. If the norm of the gradient is approximately zero in this last step,
then the accuracy used to compute the optimal gain value, which depends on Mopt,
is enough to obtain reliable solutions; otherwise we re�ne the sample {ξm}Mopt

m=1 and
we run HANSO again, initialized with the optimal gain value K obtained with the
previous rough grid. Indeed, the optimization software might stop in a local minimum
arising from the discretization of the objective function, see Figure 3.2a; a re�nement
of the grid in this case, might hence reveal a better optimal gain value.

To give an overview of the method, we provide a sketch of the overall algorithm,
which is publicly available [21].
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Algorithm 3.1. Probabilistic spectrum-based stability optimization.

1. Construct a set of Mopt realizations of ω, {ξm}Mopt
m=1 ⊆ Ω, as explained in

section 3.1.2.
2. Via HANSO, �nd the optimal gain value of the system (3.1), giving as inputs

the approximation of the objective function and its gradient on {ξm}Mopt
m=1 .

3. Likewise step 1, construct a set of Mpost realizations of ω, i.e. {ξm}Mpost
m=1 .

4. Approximate fobj and ∇K fobj on {ξm}Mpost
m=1 .

If
∇K fobj

 ≈ 0 then return K and the approximated statistical quantities E(α(ω; K)),
and V(α(ω; K)).

Else increase Mopt and go back to step 1, initializing HANSO at step 2 on the optimal
gain value previously found.

Remark 3.2. Algorithm 3.1 can be generalized to systems such that, given K ∈ Rk , the
stability measure is determined by a �nite number of eigenvalues, whose behavior in Ω
is continuous and almost everywhere smooth. Therefore, it can be easily generalized
to the spectral radius of the monodromy operator associated with linear periodic
time-delay system (1.1).

3.3 Numerical examples and applications

In this section, the novel probabilistic stability optimization method, Algorithm 3.1,
is tested on three test-cases and two engineering applications. In particular, in
section 3.3.1, static and dynamic controllers are designed by the novel approach
for a time-delay system with uncertainties a�ecting the delay and two system
coe�cients. Section 3.3.2 deals with the probabilistic stability optimization for a time-
delay system with a distributed delay. Section 3.3.3 considers the delayed feedback
oscillator (3.10) and compares the novel stability optimization method with respect
to the deterministic stabilization and worst-case minimization methods. Finally, two
engineering applications are considered; in section 3.3.4, Algorithm 3.1 designs a
static controller for an experimental heat transfer set up, while in section 3.3.5, we
stabilize a mechanical system, which is attached to an active vibration absorber.

All numerical experiments are performed in Matlab version 9.1.0 (R2016b) on a Dell
Latitude notebook running an Intel(R) Core(TM) i5-6440HQ CPU @ 2.60GHz quad
core processor with 8 GB RAM. Our experiments can be reproduced with the publicly
available code of [21].
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3.3.1 Static and dynamic controllers

As a �rst example, we consider the prototype system [51] with stochastic dimension
D = 3, expressed in the form (3.2){

9z(t) = A(ω)z(t) + Bu(t − τ (ω)),
y(t) = z(t), (3.11)

where

A(ω) = ©«
ω2 −0.03 0.2
ω3 −0.04 −0.005
−0.06 0.2 −0.07

ª®¬
, B =

©«
−0.1
−0.2
0.1

ª®¬
,
τ (ω) = ω1 ∼ U(4.9, 5.1),
ω2 ∼ U(−0.09,−0.07),
ω3 ∼ U(0.15, 0.25).

-0.1 -0.02 0.08 0.13-0.04-0.09

15

33.7

45

59

No control K = 0

K obtained by κ = 0

K obtained by κ = 103

probability density function for α (ω; K)

Figure 3.3 Comparison between the probability density functions of the spectral abscissa for
system (3.11) with static feedback control, i.e. rc = 0 in (3.12). Without control, i.e. K = 0, the
spectral abscissa α(ω, 0) admits only positive realizations. For the controller K minimizing the
mean with a variance penalty κ = 0 and κ = 103, the supports of the probability density function
are contained in the negative real axis, ensuring the asymptotic stability of the system.

As shown in Figure 3.3, the probability density function of the spectral abscissa with
K = 0, i.e. α(ω, 0), is contained in the positive real line, ensuring the system instability.
We design a dynamic controller of the form (3.3){

9zc (t) = F̂zc (t) + Ĝy(t), zc (t) ∈ Rrc ,
u(t) = Ĥzc (t) + L̂y(t), u(t) ∈ R, (3.12)

where K is the vectorization of the control matrices F̂ , Ĝ, Ĥ , and L̂, as already shown
in the transformation from (3.2) and (3.3) to (3.1).

We apply the optimization approach to objective function (3.6) considering κ = 0, 103

on the system with static control, rc = 0, and with dynamic feedback, rc = 1, 2. The
results, obtained with Mopt = 103 and Mpost = 104, are shown in Table 3.1.
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Designing a controller with higher order rc leads us to a small value of the mean
of the spectral abscissa. The supports of the spectral abscissa minimizing (3.6) with
static feedback control, illustrated in Figure 3.3, are already contained in the negative
real line, ensuring asymptotic stability properties for the system (3.11).

Table 3.1 Comparison between system (3.11) without control and the results of minimizing
objective function (3.6) with di�erent controls of the form (3.12).

Control K κ α(E(ω),K) E(α(ω,K)) V(α(ω,K))
Without control K = 0 0.1081 0.1076 9.1770 · 10−5

Static control rc = 0 κ = 0 -0.0895 -0.0739 2.3655 · 10−4

κ = 103 -0.0562 -0.0551 8.6305 · 10−6

Dynamic control rc = 1 κ = 0 -0.1620 -0.1195 6.9411 · 10−4

κ = 103 -0.1157 -0.1133 1.1774 · 10−5

Dynamic control rc = 2 κ = 0 -0.2232 -0.1995 1.0074 · 10−3

κ = 103 -0.1704 -0.1705 1.2609 · 10−5

3.3.2 Stabilization problem with distributed delay

As a second example, we consider a plant with a distributed delay term

9z(t) = A1z(t) + B(ω)u(t − τ1) +A2z(t − τ2(ω)) +
∫ t

t−τ2(ω)
A3z(θ )dθ, (3.13)

where

A1 =
©«
0.1 0 0
0.2 0 −0.2
0.3 0.1 −0.2

ª®¬
, A2 =

©«
−0.2 0 0
−0.4 −0.2 0.4
−0.4 −0.1 0.2

ª®¬
,

A3 =
©«

0.1 −0.2 0
0 0.1 0.1
−0.1 0 0.1

ª®¬
, B(ω) = ©«

ω2
0
0

ª®¬
,

τ1 = 1,
τ2(ω) = ω1 ∼ U(5.9, 6.1),
ω2 ∼ U(0.075, 0.125),

with a static feedback control: u(t) = KTz(t). Note that for �xed τ2 and ω2, the system
is analyzed in [54]. Setting h(t) equal to the distributed delay term of (3.13), and
di�erentiating h(t), the system (3.13) can be recast as{

9z(t) = A1z(t) + B(ω)u(t − τ1) +A2z(t − τ2(ω)) + h(t),
9h(t) = A3z(t) −A3z(t − τ2(ω)).

(3.14)
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Imposing x = (zT hT uT)T, system (3.14) with static feedback can be rewritten as a
delay di�erential algebraic equation of retarded type (3.1)

9x(t) = ©«
A1 I 0
A3 0 0
KT 0 −1

ª®¬
x(t) + ©«

0 0 B(ω)
0 0 0
0 0 0

ª®¬
x(t − τ1) + ©«

A2 0 0
−A3 0 0

0 0 0

ª®¬
x(t − τ2(ω)). (3.15)

Formulations (3.13) and (3.14) are almost equivalent; however, the dimension of the
latter system is doubled with respect to the dimension of (3.13). As a consequence
of di�erentiating function h(t), (3.14) has 3 additional non-physical zero eigenvalues
with respect to the spectrum of (3.13). These additional zero eigenvalues, which also
appear in the formulation (3.15), can be removed and the results obtained minimizing
objective function (3.6) with κ = 0, 10, 102, 103 using Mopt = 103, and Mpost = 104, are
shown in Table 3.2.

Table 3.2 Results of minimizing the objective function (3.6) for system (3.15).

κ α(E(ω),K) E(α(ω,K)) V(α(ω,K))
κ = 0 0.1631 0.1845 2.2629 · 10−4

κ = 10 0.1628 0.1846 2.0903 · 10−4

κ = 100 0.1694 0.1866 1.6418 · 10−4

κ = 1000 0.2375 0.2375 7.0138 · 10−6

3.3.3 Comparison with deterministic and worst-case stabilization

As a third numerical example, we consider the oscillator with static feedback
delay (2.14), whose delay di�erential algebraic form has been derived in Example 3.3.
We recall the system

©«
1

1
0

ª®¬
©«
9z1(t)
9z2(t)
9u(t)

ª®¬
=

©«
0 1 0
−ω2

1 −2ω1ω2 0
K1 K2 −1

ª®¬
©«
z1(t)
z2(t)
u(t)

ª®¬
+

©«
0 0 0
0 0 1
0 0 0

ª®¬
©«
z1(t − 1)
z2(t − 1)
u(t − 1)

ª®¬
. (3.16)

We want to design the controller parameters K1 and K2 in order to robustly stabilize
the system against uncertainty on the angular frequency ω1 and on the damping ratio
ω2. To this end, we consider three di�erent stability optimization methods. First,
the deterministic spectrum-based stability optimization, described in section 1.1.4,
designs the control K = (K1,K2) minimizing the spectral abscissa α(ω1,ω2,K), setting
ω1 = 1 and ω2 = 0.15. Second, the novel stabilization method is applied to the
system (3.16) where ω1 and ω2 are realizations of independent uniform random
variables, ω1 ∼ U(0.9, 1.1) andω2 ∼ U(0.1, 0.2), respectively. The optimal controllers
are achieved by Algorithm 3.1, minimizing the mean of the spectral abscissa with
a variance penalty, E(α(ω1,ω2; K)) + κV(α(ω1,ω2; K)) with κ = 0, 10, 100. In order
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to obtain an accurate result, Algorithm 3.1 is �rst run with Mopt = 102, hence the
results are re�ned using Mopt = 103. The third and last method to stabilize the
oscillator with feedback delay is the pseudospectral abscissa minimization [4]. In
order to apply this method, the uncertainties on ω1 and ω2 must be rewritten as linear
perturbations of the original system matrices. Therefore, we consider ω1 = 1 + 0.1 ε1
and ω2 = 0.15+ 0.05 ε2, with |ε1 | ≤ 1 and |ε2 | ≤ 1. In order to remove the nonlinearity
in the uncertainties, two additional slack variables are considered, z̃1(t) = ε1z1(t) and
z̃2(t) = ε2z2(t). Carrying out the algebraic manipulations, we can rewrite the delayed
feedback oscillator (3.16) considering ω1 and ω2 as rank-1 perturbations

©«

9z1(t)
9z2(t)

0
0
0

ª®®®®®¬
=

©«

©«

0 1 0 0 0
−1 −0.3 −2 −2 0
0 0 −1 0 0
0 0 0 −1 0
K1 K2 0 0 −1

ª®®®®®¬
+ ε1δA1 + ε1δA2 + ε3δA3

ª®®®®®¬

©«

z1(t)
z2(t)
z̃1(t)
z̃2(t)
u(t)

ª®®®®®¬
+

©«

0
u(t − 1)

0
0
0

ª®®®®®¬
,

where |ε1 | ≤ 1, |ε2 | ≤ 1, and the rank-1 matrices are

δA1 =

©«

0
0.1
0
0
0

ª®®®®®¬

©«

0
0.3
−1
−1
0

ª®®®®®¬

T

, δA2 =

©«

0
0

0.1
0
0

ª®®®®®¬

©«

1
0
0
0
0

ª®®®®®¬

T

, δA2 =

©«

0
0
0

0.05
0

ª®®®®®¬

©«

0
1
0
0
0

ª®®®®®¬

T

.

For this system, the pseudospectral abscissa corresponds to the worst-case spectral
abscissa (in the sense of being the largest) for every ε1 and ε2 smaller than 1 in absolute
value, in formula

αε1,ε2 (K) := sup
|ε1 | ≤1, |ε2 | ≤1

α(ε1, ε2,K).

The comparison results of these three di�erent stabilization methods are summarized
in Tables 3.3 and 3.4 and in Figure 3.4. As we would have expected, Table 3.3 shows that
the smallest spectral abscissa is attained by the deterministic stability optimization
method, the novel approach with a variance penalty κ = 0 and κ = 100 leads
respectively to the smallest mean and variance of the spectral abscissa random variable,
while the smallest pseudospectral abscissa is achieved by the worst-case stability
optimization. Interestingly, the numerical results obtained by the novel stabilization
method with κ = 10 are similar to the ones obtained by performing the worst-
case stabilization. This similarity is further highlighted in Figure 3.4, by comparing
the probability density functions of the spectral abscissa random variables and the
pseudospectral abscissae.

The di�erent stabilization methods ensure that the oscillator with feedback delay (3.16)
is asymptotically stable against both probabilistic and worst-case uncertainties on the
parameters ω1 and ω2. Indeed, in Figure 3.4, the supports of the probability density
function and the pseudospectral abscissae are strictly contained in the negative real
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Table 3.3 Numerical values of the spectral abscissa α(ω1,ω2,K) with ω1 = 1, ω2 = 0.15, of
the pseudospectral abscissa αε1,ε2 (K), and of the spectral abscissa random variable α(ω1,ω2,K)
mean and variance with ω1 ∼ U(0.9, 1.1) and ω2 ∼ U(0.1, 0.2) for the oscillator with feedback
delay (3.16). The controller parameters are designed with the deterministic stability optimization
method, with the novel probabilistic stabilization, and with the worst-case stabilization method,
minimizing the pseudospectral abscissa [4].

Control design κ α(ω1,ω2,K) αε1,ε2 (K) E(α(ω1,ω2,K)) V(α(ω1,ω2,K))
Deterministic -1.1388 -0.21089 -0.6699 5.4061 · 10−2

Probabilistic
0 -0.8474 -0.37223 -0.7648 1.5828 · 10−2

10 -0.7824 -0.44953 -0.7362 7.6242 · 10−3

100 -0.5811 -0.39645 -0.5531 1.8166 · 10−3

Worst-case -0.7601 -0.47371 -0.7354 8.1677 · 10−3

-1.2 -1 -0.2-0.38-0.46-0.64 -0.5-0.9 0.1-0.1
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Probabilistic κ = 10

Probabilistic κ = 100
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α (ω1, ω2, K)

p.d.f.

Figure 3.4 Comparison between the probability density functions (p.d.f.) of the spectral abscissa
random variables for the oscillator with feedback delay (3.16) with di�erent control parameters
K. These controls are designed by the deterministic stability optimization method, by the
novel probabilistic stabilization, and by the worst-case stabilization method, minimizing the
pseudospectral abscissa [4]. The dots highlight the value of the pseudospectral abscissae for the
di�erent controls.

axis. Moreover, the novel probabilistic approach with κ = 100 provides a probability
density function with the smallest support, guaranteeing the best insensitivity of the
stability measure with respect to the uncertainties.

The control parameters achieved by the deterministic stabilization methods and by the
novel approach with κ = 0 respectively lead to a continuous and Lipschitz behaviors
of the spectral abscissa. Indeed, the numerical values ofK1 andK2 in Table 3.4 coincide
with the controllers given in Table 2.1 and they are associated with the non-smooth
behaviors of the test-cases in Example 2.5.

Table 3.4 furnishes, also, the timings comparison between the di�erent stabilization
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methods. The overall time required to the optimization process is hardly comparable,
since it is problem dependent and is a�ected by the computational accuracy of the
objective function and its gradient, which might vary during the optimization process;
for example, applying Algorithm 3.1, we �rst considered Mopt = 102, and hence, we
re�ned the results using Mopt = 103.

In the last iteration of the optimization process, the computational time to evaluate
the objective function and its gradient for the novel approach is approximately Mopt
divided by the parallelization (in our case 103/4) bigger than the computational time
to compute the spectral abscissa and its gradient in the deterministic case. Indeed,
the mean and the variance with the novel method are approximated by considering
Mopt = 103 realizations of the spectral abscissa random variable and hence the usage
of specialized parallel computer architectures permits to signi�cantly reduce the
computational time of the novel approach.5

Table 3.4 Numerical values of the controllers K1 and K2 for the delayed feedback oscillator (3.16)
obtained by the deterministic stability optimization method, by the novel probabilistic stabilization,
and by the worst-case stabilization method, minimizing the pseudospectral abscissa [4]. For the
di�erent stabilization methods, we present the time request to perform the optimization process by
HANSO with 10 random initial values and the time requested to evaluate the objective function
and its gradient in the last iteration of the stabilization process.

Control design κ K1 K2 timings [s]
iteration optimization

Deterministic 0.6179 −7.1644 · 10−3 8.9861 · 10−3 12.31

Probabilistic
0 0.5105 −9.1810 · 10−2 0.9655 208.56
10 0.4504 -0.1631 0.9246 285.69
100 0.3633 -0.3988 0.9389 500.71

Worst-case 0.4444 -0.1570 0.2087 192.26

The pseudospectral abscissa computation requires to solve an optimization process in
order to reach the largest value of the spectral abscissa among all the possible linear
perturbations, for this reason the computational time is highly problem dependent
and cannot be easily compared with the other methods. The pseudospectral abscissa is
always to the the right of all the possible realizations of the spectral abscissa random
variable, Figure 3.4. Therefore, the pseudospectral abscissa represents is a more
conservative robust stability measure of the uncertain time-delay system compared
to the mean and the variance of the spectral abscissa random variable. Moreover, in
order to apply the worst-case stability optimization method, the delayed feedback
oscillator has been rewritten in such a way that the uncertainties appear as rank-1

5 Let us note that the evaluation of the spectral abscissa, Algorithm 1.1, is problem dependent. In particular,
the computational time required to the Newton’s correction to reach the requested tolerance cannot be
estimated a priori.
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linear perturbations, increasing the system dimension from r = 3 to r = 5. If the
uncertainty on the system are highly nonlinear, then it might not to be possible to
rewrite the system with rank-1 linear perturbations or the �nal system dimension
might be very large and hence computational demanding.6

3.3.4 Heating system

The novel optimization approach is tested on the linear model of the experimental heat
transfer set up, described in [98]. Feedback controllers for this model are designed by
the deterministic spectrum-based stability optimization method in [60, 51].

The mathematical model has system dimension r = 10, and involves six di�erent
delays in the state and two di�erent delays in the inputs

9z(t) =
5∑
i=0

Ai (ω,K)z(t − τi ) + B1u(t − τ5) + B2u(t − τ6), z(t) ∈ R10, (3.17)

see [60] for the corresponding matrices and delay values.

We consider system (3.17) with static feedback control: u(t) = KTz(t). In order
to determine the controller gain K ∈ Rk , we �rst apply to the nominal model
(thereby neglecting the uncertainty) the deterministic stabilization method of [51],
which adapts the method considered in section 1.1.4 to handle the leading matrix E.
Subsequently, we design K ∈ Rk by Algorithm 3.1, considering an uncertainty of 10%
on the nominal value of the left-cooler temperature, denoted by TL, and considering
an uncertainty of 10% on the nominal temperatures of both coolers, denoted by TL
and TR. The temperatures of both coolers depend on the seasonal temperature of
the outdoor air; hence, we model TL and TR as realizations of independent random
variableTL andTR uniformly distributed in the intervals [13.5, 16.5] and [15.3, 18.7],
respectively.7

To obtain the results shown in Table 3.5, we set κ = 0, 10, 102, 103 and we �rst run
Algorithm 3.1 using a number of samples Mopt = 500 and Mpost = 103. However, due
to the presence of local minima that are not global, the results did not always satisfy
the following relations:

E(α(ω,K1)) ≤ E(α(ω,K2), V(α(ω,K1)) ≥ V(α(ω,K2), (3.18)

where K1 and K2 are the optimal controller for the objective functions (3.6) with
0 ≤ κ1 < κ2. Hence, for each value of κ, we re-run Algorithm 3.1 initializing

6 Further information on the pseudospectral abscissa for time-delay systems can be found in [3], and
reference therein.

7 The uncertainty TL a�ects the (10, 10)-th entry of matrix A0, the (10, 9)-th entry of A2, and the only
non-zero coe�cient (10-th entry) of vector B1. On the other hand, the uncertainty TR a�ects the
(6, 6)-th entry of matrix A0, and the (6, 5)-th entry of A2.
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HANSO on all optimal gain values previously found and re�ning the set of realizations
using Mopt = 103 and Mpost = 104. The latter results, shown in Table 3.5, satis�es
criterion (3.18) and the gradient of the objective function, evaluated in the post-
processor analysis, is approximatively zero.

Table 3.5 Comparison between the results of minimizing objective function (3.6) for system (3.17)
with di�erent system uncertainties. The second row corresponds to optimizing the spectral abscissa
for the deterministic case, TL = 15 and TR = 17; the third to the sixth rows show the results
of optimizing (3.6) for κ = 0, 103 and imposing di�erent uncertainties. TL, TR denotes random
variables uniformly distributed in [13.5, 16.5] and [15.3, 18.7], respectively.8

Control design κ α(TL,TR,K) E(α(TL,TR,K)) V(α(TL,TR,K)) E(α(TL,TR,K)) V(α(TL,TR,K))
Deterministic −6.4140 · 10−2 −6.2668 · 10−2 2.6465 · 10−6 5.9903 · 10−2 8.4117 · 10−2

UncertainTL
0 −6.3402 · 10−2 −6.3331 · 10−2 4.9526 · 10−8 −5.4113 · 10−2 1.4040 · 10−5

103 −6.3353 · 10−2 −6.3327 · 10−2 1.0437 · 10−8 −5.7756 · 10−2 1.4668 · 10−5

UncertainTL,TR
0 −6.3406 · 10−2 −6.3209 · 10−2 2.7837 · 10−7 −6.2981 · 10−2 2.8111 · 10−7

103 −6.3143 · 10−2 −6.3081 · 10−2 8.2656 · 10−8 −6.2919 · 10−2 1.0105 · 10−7

Table 3.5 shows how the uncertainty on the parameters may a�ect the optimal gain
values and, consequently, the statistical moments of the spectral abscissa. Indeed,
increasing the stochastic dimension D, the di�erent optimal gain controllers may
change. It is important to notice, that the deterministic solution may lead to unstable
system if the temperatures of both coolers are a�ected by uncertainty, since the mean
is positive, see the highlighted cell in Table 3.5.

3.3.5 Mechanical system with active vibration absorber

The mechanical system, shown in Figure 3.5, consists of two parts, a single-degree
of freedom primary structure P which is a�ected by uncertainty and is excited by
an external harmonic force fe , and an absorber A attached to the primary structure
with spring, damper and an actuator. The control objective of this example is two-
fold. First, the external harmonic force fe has to be compensated by active feedback,
actuating with force fA. Second, the positioning of the primary structure and robust
stability of the induced equilibrium are ensured by a feedback controller designed
with the novel approach. This latter feedback controller acts on the primary structure
with the input force u and takes into account both the primary structure uncertainty
and the absorber dynamics.

The mechanical system is modeled by the following equations

mA:zA(t) + cA 9zA(t) + kAzA(t) − cA 9zP(t) − kAzP(t) = fA(t),
mP:zP(t) + cA 9zP(t) + kAzP(t) − cA 9zA(t) − kAzA(t) = −fA(t) + fe (t) + u(t),

(3.19)

8 The results obtained with κ = 10, 102 are similar to the one corresponding to κ = 0, for this reason
they are not reported in Table 3.5.
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Figure 3.5 Mechanical system with active vibration absorber.

where zP(t) and zA(t) are respectively the position of the primary structure and of
the absorber at time t , u(t) is the input parameter of the primary structure, fe is a
harmonic force exciting the system with undesirable oscillations of frequency νe ,
and fA is the force actuating between the primary mass and the absorber, which has
a suppressing e�ect on fe . The physical parameters of the system are mA, cA, kA
denoting the mass, damping and the sti�ness of the absorber and mP denotes the
primary structure mass. The parameter of system (3.19) are given in Table 3.6.

Table 3.6 Parameter values for system (3.19). The values are evaluated in [66, 65].

Parameter De�nition Mean value Uncertainty Units
mP Primary mass 1.52 ±20% kg
mA Absorber mass 0.223 kg
kA Spring sti�ness 350 N/m
cA Damping ratio of the spring 1.273 kg/s
νe Excitation frequency 13π rad/s

The absorber actively reacts on the external harmonic force with properly tuned
feedback. We consider an absorber control with distributed time-delay of the form

fA(t) =
д

τ

∫ τ

0
:zA(t − θ )dθ , (3.20)

where τ > 0 is the length of the delay, and д is the absorber feedback gain [66].

The feedback parameters, τ and д, are tuned in order to turn the absorber to an ideal
oscillator with a dominant couple of characteristic roots placed at the imaginary axis
at the given excitation frequency. Consequently, the external harmonic force at the
given frequency νe is suppressed entirely. To this end, the transfer function from fe to
zP is set equal to zero for the given frequency, i.e. it is zero in ±νe i. Splitting real and
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imaginary parts, and balancing the magnitudes, as described in [66], the parameter
of (3.20) suppressing the external harmonic force are

τ =
2
νe

(
atan

(
cAνe

mAν
2
e − kA

)
+ 2 (l − 1)π

)
, д =

τ
(
ν2
ec

2
A +

(
mAν

2
e − kA

)2
)

2ν2
ecA

, (3.21)

where l ∈ N \ {0} is the branch number denoting a counter associated with phase
wrap-around. We consider l = 1, since this branch number presents a wide stability
region [66]. Considering the values in Table 3.6 and l = 1, the delay τ and the absorber
feedback gain д in (3.21) are approximated by

τ ≈ 5.7355 · 10−2 s, д ≈ 4.3017 · 10−2 kg. (3.22)

For u ≡ 0, the spectral abscissa is zero and then the system (3.19) with active vibration
absorber (3.20)–(3.22) is not asymptotically stable. To ensure asymptotic stability
to the system, we design a feedback control, taking into account the uncertainty
contained in the primary mass mP, which we model by mP = 1.52 kg + ω, where the
random variable ω is uniformly distributed in the interval [−0.304, 0.304].
We assume that the measured outputs of the systems are the position and the velocity
of the primary structure, i.e.

y(t) =
(
zP(t)
9zP(t)

)
, (3.23)

and we design static and dynamic controllers for the plant (3.19) and output (3.23) of
the form 



9zc (t) = F̂zc (t) + Ĝ
(
y(t) −

(
zref (t)

0

))
zc ∈ Rrc ,

u(t) = Ĥzc (t) + L̂
(
y(t) −

(
zref (t)

0

))
, u(t) ∈ R,

(3.24)

where zref (t) is the desired position of the primary mass at time t , and the matrices F̂ ,
Ĝ, Ĥ and L̂ model the feedback control K ∈ Rk analogously to (3.3).

In order to apply Algorithm 3.1, the plant (3.19), output (3.23), and controller
equation (3.24) are reformulated as a system of delay di�erential algebraic equations
of retarded type of the form (3.1). To achieve this reformulation, the absorber
feedback (3.20) is rewritten as fA(t) = д/τ ( 9zA(t − τ ) − 9zA(t)) and the plant (3.19)
is rewritten in a �rst order form so that the state of the delay di�erential algebraic
equation of retarded type is x = (zA, zP, 9zA, 9zP, y

T , zTc , u)T .

In order to determine static (rc = 0) and dynamic controllers (rc = 1), we �rst
apply the deterministic stability optimization method to the nominal model obtained
by considering the averaged values of the uncertain parameter, i.e. mP = 1.52 kg.
Secondly, we design the feedback controllers by probabilistic stabilization method,
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considering the primary mass of (3.19) a�ected by uncertainty, i.e. mP = 1.52 +
ω kg, with ω being a realization of the random variable ω uniformly distributed in
[−0.304, 0.304]. The probabilistic stabilization method, described in Algorithm 3.1,
minimizes the approximated objective function (3.9) with trade o� parameters κ =
0, 1, 10, 100, and where Mopt = 103 and Mopt = 2 · 103.

The results are given in Table 3.7, and illustrated in Figure 3.6. By increasing parameter
κ the mean increases and the variance decreases, improving the robustness against
the parameter uncertainties. On the other hand, the spectral abscissa increases
and the deterministic system with mP = 1.52 kg presents a slower asymptotically
convergence rate to the zero-solution. Evident improvements can be seen with the
dynamic controller, as it has more parameters to tune and hence the optimization has
more degrees of freedom k = 6, with respect to the static controller which presents
only k = 2 degrees of freedom.

Table 3.7 Numerical value of the spectral abscissa (i.e.ω = 0,mP = 1.52 kg), its mean and variance
for system (3.19), output (3.23) and static (rc = 0) and dynamic (rc = 1) controllers (3.23). The
controllers are designed by deterministic and probabilistic spectrum-based stability optimization,
considering respectively the nominal value of the mass, mP = 1.52 kg and the mass a�ected by
20% of uncertainty, i.e.mP = 1.52 + ω kg, where ω is a realization of ω uniform random variable
in [−0.304, 0.304].

Controller Control design κ α(0,K) E(α(ω,K)) V(α(ω,K))

Static, rc = 0

Deterministic -7.4454 -4.9881 0.7812

Probabilistic

0 -6.6502 -5.0992 0.8284
1 -5.8202 -4.7553 0.4451
10 -4.0842 -3.8331 4.1171 · 10−2

100 -2.9593 -2.8894 3.6837 · 10−3

Dynamic, rc = 1

Deterministic -30.6482 -7.0621 99.3767

Probabilistic

0 -9.9397 -10.0416 22.9431
1 -8.3575 -7.0698 0.8979
10 -5.5551 -5.5108 2.7537 · 10−2

100 -4.7510 -4.7474 4.2727 · 10−3

It is possible to have some insight on the system dynamics by looking at the spectral
abscissa functions on the support of the uncertainty, Figure 3.7. The deterministic
controllers lead to spectral abscissa functions with a wider image than the ones
obtained with the probabilistic approach. In particular, the spectral abscissa function
obtained by the deterministic dynamic controller admits positive values, revealing the
system instability for some values of mP. On the other hand, the dynamic controllers
obtained by the novel approach lead to spectral abscissa functions, whose image is
contained in the real negative axis, ensuring the system stability and the robustness of
the method. Hence, even though, with the deterministic controller the performance is
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Figure 3.6 Pareto fronts, comparing the results of mean and variance given in Table 3.7.

better at the nominal value, as shown in Table 3.7, with the novel approach we ensure
a better convergence rate if the primary mass is a�ected by uncertainty. In addition,
by increasing the value κ, we obtain spectral abscissa function with a small image,
ensuring a better insensitivity with respect to the parametermP.

Moreover, analogously to the hot shower problem in section 1.2.1, the optimal gain
values achieved by the deterministic stabilization methods corresponds to a non-
Lipschitz point, sensitive to small perturbation of the parameter mP. On the other
hand, the spectral abscissa functions with optimal controller obtained by the novel
probabilistic approach show smoother behaviors.
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Figure 3.7 Spectral abscissa functions of system (3.19), (3.23), and (3.23) with primary mass
mP ∈ [1.216, 1.824] for di�erent optimal controllers K, see Table 3.7.

A comparison in the time domain of the primary mass position for the dynamic
controllers is illustrated in Figure 3.8.9 The undesired oscillations a�ect the primary
structure as the input fe is exciting the system from t = 0 s with amplitude 3 N. The
absorber A, with its feedback (3.20)-(3.22), is attached to the primary structure at time
t = 1 s while the feedback control (3.23)-(3.24) is applied during the whole simulation.
Figure 3.8 illustrates that when the absorber is attached, the oscillations a�ecting

9 The dynamics for the system with static controllers are given in [26, Figure 6], together with the time
domain simulation of the system with dynamic controller obtained by the novel probabilistic approach
with κ = 100, which is similar to Figure 3.8d.



78 | Probabilistic stability optimization

the primary mass are suppressed entirely, and the primary mass remains stable at
the desired position. At time t = 2.5 s, the reference position of the primary mass is
changed to 10 mm, in formula:

zref (t) =
{

0 mm, t ∈ [0, 2.5] s,
10 mm, t ∈ [2.5, 4] s. (3.25)

The system response is shown in Figure 3.8. We observe performance degradation
with dynamic controllers in the deterministic case and for low values ofκ. In particular,
the system with the deterministic dynamic controller is not stable for mP < 1.52(1 −
13.65%) ≈ 1.31 kg, see Figure 3.8a, while the dynamic controllers obtained by the novel
approach ensure that the system is stable formP ∈ [1.52(1 − 20%), 1.52(1 + 20%)] kg.
However, in this latter case, the dynamics vary depending on the parameter κ: for
κ = 0, and κ = 1 we observe performance degradation and the primary structure for
mP ≈ 1.52(1− 20%) kg oscillates a lot after the reference position is changed, while for
κ = 10 the dynamics are almost insensitive to primary mass variations, and presents
null overshoot.
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(a) Deterministic feedback.
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Figure 3.8 Dynamics comparison of the primary structure position for system (3.19), (3.23)
and (3.23) with di�erent nominal values of the primary mass mP. The dynamic controller rc = 1
are designed by deterministic stability optimization, section 1.1.4, and probabilistic stabilization
method, Algorithm 3.1. In Figure 3.8a, the dynamic formP = 1.52(1 − 20%) kg is not shown for
every t ∈ [0, 3.5] s, since it is unstable and blows up.
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Summary. The novel probabilistic stabilization method, improving the stability
properties of uncertain linear interconnected time-delay systems, presents several
advantages. A wide class of interconnected systems can be modeled by the delay
di�erential algebraic equation formulation. The uncertainties, described by random
variables with given probability function, can a�ect all the parameters, including the
delays. The solutions are more robust and reliable for applications compared to the
deterministic design. Di�erent dynamics of stable and robust systems can be achieved
by varying the variance penalty in the objective function.
Extended research results of chapter 3 are presented in section 5.1.2.





4
Stability & Stabilization
for periodic delay systems

This chapter presents novel numerical methods for the stability assessment and the stabilization
of linear periodic time-delay systems, where the delays and period are assumed to be
commensurable. Under this assumption, the Floquet multipliers are characterized not only as the
elements of the monodromy operator spectrum but also as eigenvalues of a characteristic matrix,
whose evaluation involves the solution of an initial value problem. This dual interpretation
is exploited to compute dominant Floquet multipliers and their associated right eigenvectors,
combining a global approximation with local corrections. The left eigenvector is characterized
as the right eigenvector of a “transposed” characteristic matrix, or equivalently as the right
eigenfunction of the monodromy operator associated with a dual periodic time-delay system.
The characteristic matrix also provides an expression for the derivatives of Floquet multipliers,
which is applied for the stabilization of the system. Several examples illustrate the e�ciency
and accuracy of the novel methodologies.

Recall the linear time-periodic time-delay system (1.1),

9x(t) =
h∑
j=0

Aj (t)x(t − τj ), (4.1)

with h ∈ N, state variable x(t) ∈ Rr , and the matrix-valued functions Aj : R →
Rr×r , t 7→ Aj (t) are continuous and T -periodic, for j = 0, . . . ,h. The period is
positive, T > 0, and the delays are sorted in increasing order, 0 ≤ τ1 < τ2 < · · · < τh .

We focus on linear periodic time-delay systems (4.1) where the time-delays and period
are commensurate. More precisely, we consider the following assumption.

Assumption 4.1. There exist a positive real number ∆ > 0, natural numbers N and
nj , for j = 1, . . . ,h such that the period and delays satisfy

T = N∆, τj = nj∆, j = 1, . . . ,h. (4.2)

Under Assumption 4.1, the Floquet multipliers satisfy not only the in�nite-dimensional
linear eigenvalue problem (1.3), de�ned by the monodromy operator, but also a
�nite-dimensional nonlinear eigenvalue problem. This dual interpretation permits
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to develop spectrum-based stability assessment and stabilization for the periodic
time-delay system (4.1), analogously to the methods for autonomous time-delay
systems, presented in sections 1.1.3-1.1.4, relying on the dual interpretation stated
in Theorem 1.3. The novelty of these spectrum-based stability assessment and
stabilization methods compared to the state-of-the-art are presented in section 1.2.3.

The chapter is structured as follows. In section 4.1, the spectral properties of
system (4.1) are addressed, focusing on the characterization of Floquet multipliers
in terms of a nonlinear eigenvalue problem. In section 4.2 algorithms for computing
Floquet multipliers are presented. Characterizations of left eigenvectors are presented
in section 4.3. Section 4.4 is devoted to the sensitivity analysis of the Floquet
multipliers, with application to the design of stabilizing controllers. Section 4.5
illustrates the e�ciency of the novel approach using numerical experiments.
Additional remarks, beyond the stability assessment and stabilization of periodic
time-delay systems (4.1), are presented in section 4.6.

4.1 Spectral properties

As mentioned in section 1.1.1, and more precisely in Proposition 1.1, the stability
properties of a periodic time-delay system can be inferred from the Floquet multipliers,
the non-zero eigenvalues of the monodromy operator. A graphical interpretation
of the monodromy operator action and its associated in�nite-dimensional linear
eigenvalue problem is given in Figure 4.1.

−τh T − τh T0

φ

U φ
U φ = µφ

(a) T > τh .

−τh T − τh T0

φ

U φ
U φ = µφ

(b) T < τh .

Figure 4.1 The monodromy operator U translates the continuous function φ : [−τh, 0] → Cr
along the corresponding solution over a time-interval of lengthT . In both cases, the depicted initial
function φ corresponds to an eigenfunction of the monodromy operator.

We show that the Floquet multipliers can not only be obtained by solving the in�nite-
dimensional linear eigenvalue problem (1.3), but also from the solutions of a �nite-
dimensional nonlinear eigenvalue problem. This dual interpretation plays a major role
in the subsequent developments of the stability assessment and stability optimization
methods. We start with a technical lemma.
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Lemma 4.1 Number µ ∈ C \ {0} is a Floquet multipliers of the periodic system (4.1)
with period T = N∆ if and only if there exists a continuous CNr -valued function, q(s)
with q(0) , 0, which satis�es the boundary value problem{

9q(s) = A(s, µ)q(s), s ∈ [0, 1],
q(1) = B(µ)q(0), (4.3)

where

B(µ) =
(
0 IN−1
µ 0

)
⊗ Ir .

The di�erential equation (4.3) is described by

9qn(s) = ∆
h∑
j=0

Aj ((s + n − 1)∆) µan−nj qbn−nj (s), n = 1, . . . ,N , (4.4)

with

ak =

⌊
k − 1
N

⌋
, bk = (k − 1) mod N + 1,

such that q(s) = (
qT

1(s) · · · qT
N (s)

)T.

Before the detailed proof, we sketch the main idea behind Lemma 4.1, considering the
simplest case h = N = n1 = ∆ = 1. The solution x(t ; 0,φ), emanating at t = 0 from an
eigenfunction φ corresponding to Floquet multiplier µ, satis�es for t ∈ [0, 1]

9x(t ; 0,φ) = A0(t)x(t ; 0,φ) +A1φ(t)

= A0(t)x(t ; 0,φ) +A1
x(t ; 0,φ)

µ
,

as well as x(1; 0,φ) = µx(0; 0,φ). Setting q(t) = x(t ; 0,φ), we get a boundary value
problem of the form (4.3). A graphical illustration of the generalization is given in
Figure 4.2. The variable s in (4.3) is a local coordinate inside each interval of length ∆.

Proof. Let (µ,φ) be an eigenpair of U . Recall the initial value problem (1.2) for
system (4.1) {

9x(t) = ∑h
j=0 Aj (t)x(t − τj ), t ∈ [t0,∞),

x(t) = φ(t − t0), t ∈ [t0 − τh, t0],
and consider its solution in the interval [−τh,T ], initialized with φ at t0 = 0, i.e.
x(t ; 0,φ) for t ∈ [−τh,T ]. By assumption, we have x(T + θ ; 0,φ) = µφ(θ ) for every
θ ∈ [−τh, 0]. We divide the interval [−τh,T ] into ∆-length subintervals and de�ne

qn(s) = x ((s + n − 1)∆; 0,φ) , s ∈ [0, 1],
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Figure 4.2 Exempli�cation of Lemma 4.1 proof for two examples. Function φ represents an
eigenfunction of the monodromy operator. Functions q1, . . . ,qN in (4.4) can be interpreted as
describing segments of the emanating solution.

for n = −nh, . . . ,N . We de�ne q(s) = (
qT

1(s) · · · qT
N (s)

)T. Since the solution is
initialized on an eigenfunction, i.e. φ = 1

µ xT (·; 0,φ), functions {qn(s)}0n=−nh+1 are
related to {qn(s)}Nn=1 via

qn(s) = 1
µ
qN+n(s) = µ b

n−1
N cq(n−1) mod N +1(s), n = −nh + 1, . . . , 0. (4.5)

Furthermore, for every n = 1, . . . ,N , we have

qn(s − τj ) = x
((s + n − nj − 1)∆; 0,φ

)
= qn−nj (s) = µan−nj qbn−nj (s).

These properties are illustrated in Figure 4.2.

From the chain rule, it follows that for n = 1, . . . ,N and s ∈ [0, 1]

9qn(s) = ∆ 9x((s + n − 1)∆; 0,φ)

= ∆
h∑
j=0

Aj ((s + n − 1)∆)x((s + n − nj − 1)∆; 0,φ)

= ∆
h∑
j=0

Aj ((s + n − 1)∆)qn−nj (s)

= ∆
h∑
j=0

Aj ((s + n − 1)∆)µan−nj qbn−nj (s),

hence, di�erential equation in (4.3) is satis�ed. The boundary condition is also satis�ed,
following from the continuity of the solution and the property x(0; 0,φ) = 1

µ x(T ; 0,φ).
Finally, we prove by contradiction that q(0) , 0. If q(0) = 0, then the solution of the
di�erential equation in (4.3) would be q ≡ 0, which implies that x(t ; 0,φ) ≡ 0 by the
monodromy operator action (4.5). However, this is in contradiction with the property
that an eigenfunction is not identically zero.
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Letq(s) be a continuous CNr -valued function, satisfying the di�erential equation (4.3)
We construct function x(t), t ∈ [−τh, T ] from q in the following way,{

x(t) = µanqbn
( t
∆ − (n − 1)) , t ∈ ((n − 1)∆, n∆], n = −nh + 1, . . . ,N ,

x(−τh) = µa−nh+1qb−nh+1 (0)

and show that it corresponds to a solution initialized at an eigenfunction of U . The
construction of x implies

x(t) = qn
( t
∆
− (n − 1)

)
, t ∈ ((n − 1)∆, n∆], n = 1, . . . ,N (4.6)

and, for any j ∈ {1, . . . ,h},

x(t − τj ) = µan−nj qbn−nj
( t
∆
− (n − 1)

)
, t ∈ ((n − 1)∆, n∆], n = −nh + 1 + nj , . . . ,N .

Following from the construction of x and condition q(1) = B(µ)q(0), we have that x
is continuous on [−τh, T ] and

x(t) = 1
µ
x(t +T ), t ∈ [−τh, 0].

It remains to show that x is a solution of (4.1). In the time-interval [(n − 1)∆, n∆], for
any n = 1, . . . ,N , we obtain from (4.6) that

9x(t) = 1
∆

9qn
( t
∆
− (n − 1)

)
=

h∑
j=0

Aj (t)µan−nj qbn−nj
( t
∆
− (n − 1)

)

=

h∑
j=0

Aj (t)x(t − τj ),

which completes the proof. �

Denotingv = q(0), conditions (4.3) can be rewritten in the form

N(µ)v = 0. (4.7)

Here, the functionN : C→ CNr×Nr is analytic in C \ {0}, and for a given value of µ
andv the matrix-vector product N(µ)v is determined as follows,

N(µ)v = q(1) − B(µ)v, (4.8)

where q is the solution of initial value problem{
9q(s) = A(s, µ)q(s), s ∈ [0, 1],
q(0) = v . (4.9)
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Equation (4.7) can be interpreted as a nonlinear eigenvalue problem. The relation
with the eigenvalue problem for the monodromy operator is clari�ed in the following
theorem, which generalizes [80, Theorem 2.1] to non-scalar systems with multiple
delays.

Theorem 4.2 Let µ̂ ∈ C \ {0}. If the pair (µ̂, φ̂) is a solution of the in�nite-dimensional
linear eigenvalue problem

U φ = µ φ, µ ∈ C \ {0}, φ ∈ X \ {0}, (4.10)

then (µ̂, v̂) is a solution of the �nite-dimensional nonlinear eigenvalue problem

N(µ)v = 0, µ ∈ C \ {0}, v ∈ CNr \ {0}, (4.11)

where v̂ = (vT
1 · · · vT

N )T is determined by

vn = x((n − 1)∆; 0, φ̂), n = 1, . . . ,N .

Conversely, if the pair (µ̂, v̂) is a solution of (4.11), then (µ̂, φ̂) is a solution of (4.10),
where for every n = −nh + 1, . . . , 0,

φ̂(t) = µ̂ b n−1
N cq(n−1) mod N +1

( t
∆
− (n − 1)

)
, t ∈ ((n − 1)∆, n∆],

with q(s) = (
qT

1(s) · · · qT
N (s)

)T the solution of initial value problem (4.9) forv = v̂ and
µ = µ̂.

Proof. The assertions follow from the constructions in the proof of Lemma 4.1. �

The dimension of nonlinear eigenvalue problem (4.11) does not only depend on
the system dimension r but also on the number N of ∆-subintervals of [0, T ] (see
Assumption 4.1). The latter is minimized if ∆, in (4.2), is chosen as the greatest
common divisor of τ1, . . ., τh , and T . We now present an example where N = 1.

Example 4.1. We consider system

9x(t) =
h∑
j=0

Aj (t)x(t − jτ ) (4.12)

with T = τ . When taking ∆ = τ we can express N(µ)v = q(1) − µv , where q satis�es{
9q(s) = τ ∑h

j=0 Aj (sτ )q(s)µ j , s ∈ [0, 1],
q(0) = v . (4.13)
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Moreover, if system (4.12) is scalar, i.e. r = 1, N(µ) can be explicitly expressed in
terms of the coe�cients Aj (t) and we can derive a nonlinear equation for the Floquet
multipliers. Indeed, if we let

aj =

∫ 1

0
τAj (sτ )ds =

∫ τ

0
Aj (t)dt,

then the solution of the di�erential equations in (4.13) is

q(1) = e
∑h
j=0 µ

−jajv .

Hence, the Floquet multipliers correspond to the solutions of equation

e
∑h
j=0 µ

−jaj − µ = 0, (4.14)

which is in accordance to the characteristic equation for the Floquet exponents as
de�ned in [33, Section 8.1].

4.2 Stability assessment

This section describes two techniques for computing dominant Floquet multipliers,
which are combined in order to accurately infer the stability properties of system (4.1).
These two techniques are outlined in Figure 4.3. The �rst technique, discussed in
section 4.2.1, approximates the Floquet multipliers by a spline collocation method,
furnishing a global view of the monodromy operator spectrum, and, hence, detecting
a guess of the largest Floquet multiplier in modulus. The second technique, analyzed
in section 4.2.2, computes the Floquet multiplier in a neighborhood of an initial
guess by Broyden’s method, a local root-�nding method, where the accuracy of
the computation depends on evaluating the matrix-vector product N(µ)v . Finally,
section 4.2.3 discusses an algorithm for the computation of Floquet multipliers based
on a combination of these techniques.

4.2.1 Discretization of the in�nite-dimensional linear eigenvalue problem

We derive a �nite-dimensional linear eigenvalue problem, whose eigenvalues
approximate Floquet multipliers. First, we outline how a collocation approach can
approximate solutions of (4.1) in the form of a spline. Second, we illustrate how these
approximations induce a matrix approximation of the monodromy operator. The
derivation is di�erent from [8, Chapter 6], and from [10] for the one-delay case, but
the underlying ideas are the same. Third, in the spirit of Theorem 4.2, we show that
the corresponding linear eigenvalue problem can also be obtained from a particular
approximation of the nonlinear eigenvalue problem (4.11). The latter explains a
particular choice of spline, in accordance with the subdivision of the interval [−τh, T ]
in intervals of length ∆. We conclude with some implementation aspects.
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In�nite-dimensional linear
eigenproblem

U φ = µφ, φ ∈ X \ {0}

Finite-dimensional nonlinear
eigenproblem

N(µ)v = 0,v ∈ CNr \ {0}
Theorem 4.2

Matrix eigenvalue problem (4.21)
→ global approximation

Broyden’s method for solving
Nδ (µ)v = 0

→ local correction

Figure 4.3 Approach for computing dominant Floquet multipliers and stability assessment of (4.1).
The upper part illustrates the theoretical results of section 4.1 concerning the dual interpretation of
Floquet multipliers in terms of eigenvalue problems. The lower part outlines the Floquet multipliers
computation of section 4.2.

Discretization of the initial value problem

We approximate a solution of (4.1) by a spline, which is piecewise de�ned on ∆-
subintervals by M-degree polynomials {qMn }Nn=−nh+1, where polynomial qMn represents
the approximation on the interval [(n−1)∆, n∆). Without loss of generality, we assume
that this ∆-interval is scaled and shifted to the interval [0, 1). Given a polynomial
basis {pi }i ∈N in the interval [0, 1], this spline approximation is uniquely determined
by the coe�cients c of the polynomials {qMn }Nn=−nh+1,

c =
©«
c−nh+1
...
cN

ª®®¬
, cn =

©«
c0,n
...

cM ,n

ª®®¬
, n = −nh + 1, . . . ,N ,

such that

qMn (s) =
M∑
i=0

ci ,npi (s), s ∈ [0, 1]. (4.15)

We note that the coe�cient vector (cT
−nh+1 · · · cT

0)T can be interpreted as a parametriza-
tion of the initial condition. Specifying this vector to the value cφ ∈ Rnhr (M+1) leads
us to the condition

Bc = cφ , (4.16)

where
B =

(
Inh 0nh×N

) ⊗ Ir (M+1).

We now determine conditions expressing that the vector (cT
1 · · · cT

N )T corresponds to
the emanating solution. We �rst require continuity on [0, T ], which can be expressed
as

qMn (0) = qMn−1(1), n = 1, . . . ,N . (4.17)
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Second, we impose collocation requirements for the time-delay system (4.1) on a mesh
{ξm}Mm=1 over the interval [0, 1], which lead to

9qMn (ξm) = ∆
h∑
j=0

Aj ((ξm + n − 1)∆)qMn−nj (ξm), m = 1, . . . ,M, n = 1, . . . ,N . (4.18)

Conditions (4.17) and (4.18) can be stated in matrix form as

Sc = 0, (4.19)

with S ∈ C(N×(nh+N ))r (M+1). Finally, the approximate solution with initial condition
parametrized by cφ can be computed from (4.19) and (4.16), leading to

c =

(
S
B

)−1
ETcφ , (4.20)

with
E =

(
0nh×N Inh

) ⊗ Ir (M+1).

Discretization of the monodromy operator

The monodromy operator describes the translation along a solution from the interval
[−τh, 0] to the interval [T − τh, T ]. Considering the previously de�ned spline
approximation of a solution, the monodromy operator action can be approximated by
the mapping from vector cφ , which gives rise to the discretized solution (4.20), into
vector cT =

(
cT
N−nh+1 · · · cT

N

)T
.

We can express cT = Ec , leading to

cT = E

(
S
B

)−1
ET cφ .

Hence, the in�nite-dimensional linear eigenvalue problem (4.10) is discretized by

UMcφ = µ cφ , (4.21)

where UM is a matrix approximation of the monodromy operator,

UM = E

(
S
B

)−1
ET =

(
0 Inhr (M+1)

) (
S

Inhr (M+1) 0

)−1 (
0

Inhr (M+1)

)
.
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Interpretation in terms of the �nite-dimensional nonlinear eigenvalue problem

We can alternatively obtain (4.21) from the nonlinear eigenvalue problem (4.11) by a
spectral discretization of boundary value problem (4.3). More precisely, approximating
q by a M-degree polynomial,

qM (s) =
©«
qM1 (s)
...

qMN (s)

ª®®¬
, s ∈ [0, 1],

imposing collocation requirements for the di�erential equation on the mesh {ξm}Mm=1
and imposing the condition qM (1) = B(µ)qM (0) lead us to (4.19) supplemented with

cφ = R(µ)cq, (4.22)

where

cφ =
©«
c−nh+1
...
c0

ª®®¬
, cq =

©«
c1
...
cN

ª®®¬
,

and

R(µ) =




(
0N−nh×nh Inh

)
⊗ Ir (M+1), nh ≤ N ,

©«

0 Inh mod N
µ dnh/N e
IN

µ dnh/N e−1

...

IN/µ

ª®®®®®®¬
⊗ Ir (M+1), nh > N .

As spelled out in the proof of Lemma 4.1, the di�erential equation (4.3) is derived
from equation (4.5) by expressing x(t ; 0,φ) in the time-interval [−τh, 0] in terms of
µ, µ2, . . .-fractions of x(t ; 0,φ) at positive time-instants t ∈ [0, T ], where φ is an
eigenfunction of U . The two cases in the expression for R(µ) correspond to the
situation depicted in Figure 4.2a and Figure 4.2b, respectively.

Partitioning S =
(
Sφ Sq

)
, according to the subdivision of c into cφ and cq , allows to

rewrite (4.19)–(4.22) as {
Sφcφ + Sqcq = 0,
cφ = R(µ)cq,

which brings us to the polynomial eigenvalue problem

µ dnh/N e
(
SφR(µ) + Sq

)
cq = 0. (4.23)

To establish a connection between this eigenvalue problem and (4.21), we note
that (4.22) is equivalent to

Bc =
1
µ
Ec .
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Conditions (4.19)-(4.22) can then be rewritten as µSc = 0 and µBc = Ec , which brings
us to the generalized eigenvalue problem(

µ

(
S

Inhr (M+1) 0

)
−

(
0Nr (M+1) 0

0 Inhr (M+1)

))
c = 0. (4.24)

From Sylvester’s determinant theorem [35, Theorem 1.3.22], the sets of non-zero
eigenvalues of (4.24) and of monodromy matrix approximation UM are the same.

In conclusion, the non-zero eigenvalues of matrix UM , generalized eigenvalue
problem (4.24), and polynomial eigenvalue problem (4.23) coincide. The dimensions
are nhr (M + 1), (nh + N )r (M + 1), and Nr (M + 1) (but the order of the polynomial
eigenvalue problem is dnh/N e) while the corresponding eigenvectors, cφ , c, cq
parametrize segments of the approximate solution emerging from the eigenfunction.

Choice of polynomial basis and collocation points

Generalized eigenvalue problem (4.24) and polynomial eigenvalue problem (4.23)
lie at the basis of our algorithm for approximating Floquet multipliers. In our
implementation, we express polynomials {qMn }Nn=−nh+1 in a Chebyshev basis,

qMn (t) =
M∑
i=0

ci ,nTi (2t − 1) , t ∈ [0, 1],

where Ti is the i-degree Chebyshev polynomial of the �rst kind, and we take as
collocation points {ξm}Mm=1 the Chebyshev nodes shifted and scaled in [0, 1],

ξm =
1
2 (ζm + 1), ζm = − cos (m − 1)π

M
, m = 1, . . . ,M . (4.25)

As we shall document in section 4.5.1, spectral accuracy (convergence rate faster
than O (

M−k
)

for any k ∈ N) is observed for the approximation of a simple Floquet
multiplier. This is expected, as the method can be interpreted in terms of a spectral
discretization [89] of boundary value problem (4.3), with (4.25) as collocation points.

To conclude the section, we specify matrix S in (4.24) for a particular case.

Example 4.2. We reconsider system (4.12) with T = τ , leading to ∆ = 1. We can
express

S =

(
0 · · · 0 −(1 1 . . . 1) ⊗ Ir (1 (−1) . . . (−1)M ) ⊗ Ir
−Ah · · · −A2 −A1 U ⊗ Ir −A0

)
,

where the �rst r rows are determined by the continuity conditions (4.17), while the
other Mr rows are obtained by the collocation conditions (4.18). The block matrices,
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determining S , are given by

Aj = ∆
©«
Aj (ξ1∆)T0 (ζ1) . . . Aj (ξ1∆)TM (ζM )

...
...

Aj (ξM∆)T0 (ζM ) . . . Aj (ξM∆)TM (ζM )

ª®®¬
,

for j = 0, . . . ,h, and

U = 2
©«
0 1U0 (ζ1) . . . MUM−1 (ζ1)
...

...
...

0 1U0 (ζM ) . . . MUM−1 (ζM )

ª®®¬
,

with Ui the i-degree Chebyshev polynomial of the second kind.

4.2.2 Newton’s type algorithms for the nonlinear eigenvalue problem

The alternative formulation (4.11) of the eigenvalue problem allows us to compute
eigenpairs by applying an iterative solver for nonlinear equations to the system{

N(µ)v = 0,
w∗v = 1,

where the second equation, with w ∈ CNr , is a normalization constraint. Letting
y = (vT µ)T we can compactly write the system in the form F (y) = 0. The application
of a damped Newton’s method leads us to the basic iteration

yi+1 = yi − γiHiF (yi ), i ∈ N,

where γi ∈ (0, 1] is the damping factor and Hi represents the employed inverse
Jacobian approximation.

In the exact Newton’s method, the true Jacobian is used, which implies

Hi := J (yi )−1 =

(
N(µi ) dN(µi )

dµ vi

w∗ 0

)−1

,

and a system of equations needs to be solved to obtain the search directionHiF (yi ). To
computeN(µi ), we have to solve initial value problem (4.9) for Nr independent initial
conditions. To compute matrix-vector product dN(µi )

dµ vi we can use the following
proposition.10

10 The proposition here presented generalizes the result of [71, Section 3.1], stated in terms of Floquet
exponents for a periodic system with a single delay term and this delay equal to the periodicity of the
system matrices.
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Proposition 4.3 Let (µ,v), with µ , 0, be an eigenpair of (4.11). Let q be such
that (4.9) is satis�ed. Then we can express

dN(µ)
dµ v = qµ (1) −vN ,

where qµ is the solution of initial value problem

{
9qµ (s) = ∂A(s ,µ)

∂µ q(s) +A(s, µ)qµ (s), s ∈ [0, 1],
qµ (0) = 0,

(4.26)

andvN = (0 · · · 0vT
1)T, withv = (vT

1 · · · vT
N )T.

Proof. The solution of (4.9), evaluated at any s ∈ [0, 1], is a smooth function of µ on
C \ {0}. The assertion follows from di�erentiating (4.8) and (4.9) with respect to µ,
the latter giving rise to equation (4.26). �

In the Broyden’s quasi-Newton’s method [2, 39] (for simplicity, we consider only the
so-called good Broyden’s method) an approximation of the Jacobian inverse is updated
in every iteration by a rank-one matrix, using the formula

Hi+1 = Hi −
(HiF (yi+1) − (1 − γi )HiF (yi )) (F (yi )∗H ∗i Hi )

F (yi )∗H ∗i (HiF (yi+1) − HiF (yi )) ,

where in our implementation we use as initialization H0 = I or

H0 = J (y0)−1. (4.27)

Since characteristic matrix N(µ) is not in explicit form, we need to numerically solve
the initial value problems (4.9) and (4.26) for evaluating matrix-vector productsN(µ)v
and dN(µ)

dµ v . The implementation approximates these initial value problems with �xed
step-size δ , considering the mixed explicit-implicit trapezoidal rule if the di�erential
equation is sti�, and a Runge-Kutta method of order 4 for non-sti� problems. In this
way, the resulting iterative scheme can also be interpreted as applying a Newton’s
type method to solve the approximate eigenvalue problem

Nδ (µ)v = 0, (4.28)

whereNδ is obtained fromN by replacing the exact solution of (4.9) and (4.26) by the
numerical solution. Compared to standard nonlinear eigenvalue problems in explicit
form, as (1.12) for autonomous linear system, there is a signi�cant additional cost
in evaluating the characteristic matrix N(µ), which is needed in every iteration of
Newton’s method but avoided in Broyden’s method.
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4.2.3 Floquet multipliers computation

The results in sections 4.2.1-4.2.2 lead us to the following high-level algorithm for
computing (part of) the monodromy operator spectrum, which is conceptually similar
to Algorithm 1.1, described in section 1.1.3, for computing characteristic roots of
linear time-invariant systems with delays.

Algorithm 4.1. Two-stage approach for computing Floquet multipliers.

1. Fix M ∈ N, and compute eigenvalues and eigenvectors of (4.23).
2. Fix δ > 0, and correct the individual Floquet multiplier approximations, and

extracted eigenvector approximations of (4.11), by applying Broyden’s method
to (4.28).

For problems of moderate dimension Nr , we use a direct method to compute all
eigenvalues of (4.23) in the �rst stage, resulting in approximate eigenpairs (µ, cq).
Recall from (4.15) and the construction in the previous section that cq = (cT

1 · · · cT
N )T

parametrizes the approximate solution corresponding to an eigenfunction of U . By
Lemma 4.1 this allows us to extract an approximation of the eigenvectorv in (4.11),

v = (vT
1 · · · vT

N )T, vn =
M∑
i=0

pi (0)ci ,n, n = 1, . . . ,N ,

that is used in the initialization of the second stage, along with (4.27) as initialization
of the inverse Jacobian approximation.

For problems with high dimension Nr , it is computationally infeasible to use a direct
method in the �rst stage of Algorithm 4.1, and iterative eigensolvers are to be preferred.
In section 4.5.3, we employ Arnoldi’s method to matrix UM in (4.21), where every
iteration requires solving a system of equation with matrix Sq since

UMcφ =
(
0 Inhr (M+1)

) (
Sφ Sq
I 0

)−1 (
0

Inhr (M+1)

)
cφ

=
(
0 Inhr (M+1)

) (
cφ

−S−1
q Sφcφ

)
.

(4.29)

In this way, eigenvector approximations are obtained in the form of coe�cient vector
cφ . The latter can be turned into an eigenvector approximation of (4.11) by numerically
solving the initial value problem (1.2) on the interval [0, T ], with φ the M-degree
spline de�ned by the coe�cients cφ . The inverse Jacobian in Broyden’s method is
initialized with the identity matrix, in this case.

Algorithm 4.1 turns out to be very e�cient for computing dominant Floquet
multipliers. As the �rst step serves to scan the complex plane, the requirement on M is
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that the obtained approximation of the dominant Floquet multiplier and corresponding
eigenvector is in the region of attraction of Broyden’s method, but M should not be too
large, since the eigenvalue problem (4.23) has dimension O (r (M + 1) × r (M + 1)).11

As the second step serves for local improvement (and discarding spurious eigenvalues),
parameter δ should be chosen su�ciently small not only to e�ectively take the role of
corrector but to be able to reach the desired �nal accuracy on the Floquet multipliers
(recall that modi�ed problem (4.28) is actually solved in the second stage). The �xed
step-size δ can be estimated by trials and errors: comparing the results obtained by
an adaptive solver with the solution achieved with �xed step-size δ by the trapezoidal
rule or by Runge-Kutta method of order 4.
Remark 4.1. As presented in section 4.2.1, the discretized eigenvalue problem (4.23)
can also be derived from (4.11) by approximating the solution of the di�erential
equation in (4.9). This approach is based on solving boundary value problem (4.3),
parametrized by µ, for which the collocation approach is appropriate. In the context
of local corrections, we need to solve initial value problem (4.9) for speci�ed values of
µ andv , for which a time-stepping method is preferable.
Remark 4.2. If a factorization of matrix Sq or even storing the matrices of the
discretized eigenvalue problem would be infeasible, one may be able to apply
Broyden’s method based on the nonlinear eigenvalue problem formulation (the second
stage). In this case, multiple Floquet multiplier approximations can still be obtained,
using the de�ation technique as presented in [45, 18, 39].

4.3 Characterization of the left eigenvectors

We again consider nonlinear eigenvalue problem (4.11), with N de�ned by (4.8)-(4.9).
Vector u ∈ CNr \ {0} is called a left eigenvector of N , corresponding to eigenvalue µ
if

u∗N(µ) = 0,
or, equivalently, N(µ)∗u = 0. In order to give an expression in terms of a right
eigenvector, we �rst de�ne the “transposed” nonlinear eigenvalue problem

Ň(µ)v = 0, (4.30)
where for given µ ∈ C \ {0} andv ∈ CNr \ {0} the matrix vector product Ň(µ)v is
determined as

Ň(µ)v = p(0) − B(µ)Tv,
where p is the solution of problem{

9p(s) = −A(s, µ)Tp(s), s ∈ [0, 1],
p(1) = v . (4.31)

11 Further research directions might address how to determine the number of collocation points M a priori,
as explained with further details in the next chapter 5, section 5.2.3.
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This bring us to the following result, which is analogous to Proposition 1.5 for
autonomous time-delay system.

Theorem 4.4 Let u ∈ CNr and µ ∈ C \ {0}. Vector u is a left eigenvector of (4.11)
corresponding to eigenvalue µ if and only if it is a right eigenvector of problem (4.30)
corresponding to eigenvalue µ̄.

Proof. It su�ces to prove that for any µ ∈ C \ {0} we have Ň(µ) = N(µ̄)∗. To this
end, take arbitrary vectors u ∈ CNr and v ∈ CNr . Let 〈·, ·〉 be the Euclidean inner
product in CNr and let q satisfy{

9q(s) = A(s, µ̄)q(s), s ∈ [0, 1],
q(0) = u .

We can derive

〈N(µ̄)u,v〉 − 〈u, Ň(µ)v〉 = q(1)∗v −u∗B(µ̄)∗v −u∗p(0) +u∗B(µ)Tv
= q(1)∗v −u∗p(0) = q(1)∗p(1) − q(0)∗p(0)

=

∫ 1

0

dq(s)∗p(s)
ds ds =

∫ 1

0
9q(s)∗p(s) + q(s)∗ 9p(s)ds

=

∫ 1

0
q(s)∗A(s, µ̄)∗p(s) − q(s)∗A(s, µ)Tp(s)ds

= 0,

which concludes the proof. �

Example 4.3. For time-delay system (4.12) with τ = T , we can set ∆ = τ and N = 1.
Analogously to Example 4.1, the matrix vector product Ň(µ)v for µ ∈ C \ {0} and
v ∈ Cr \ {0} is determined as Ň(µ)v = p(0) − µv , where{

9p(s) = −τ ∑h
j=0 Aj (sτ )T p(s)

µ j , s ∈ [0, 1];
p(1) = v .

In the spirit of Theorem 4.2, we now establish, as the main result of this section,
a connection between transposed nonlinear eigenvalue problem (4.30) and the
monodromy operator corresponding to the following dual time-delay system:

9x(t) =
h∑
j=0

Aj (−t + τj )T x(t − τj ), (4.32)

where the matrix coe�cients are not only transposed but they also present a reverse
and shift of the time. The following theorem is stated considering the permutation
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matrix R ∈ RNr×Nr de�ned as

R =
©«

Ir

. .
.

Ir

ª®®¬
.

Theorem 4.5 Let Ǔ be the monodromy matrix corresponding to system (4.32). Let
µ̂ ∈ C \ {0}. If the pair (µ̂, φ̂) is a solution of

Ǔ φ = µ φ, µ ∈ C \ {0}, φ ∈ X \ {0}, (4.33)

then (µ̂, v̂) is a solution of

Ň(µ)v = 0, µ ∈ C \ {0}, v ∈ CNr \ {0}, (4.34)

where v̂ = (vT
1 · · · vT

N )T is determined by

vn = x((N − n)∆; 0, φ̂), n = 1, . . . ,N ,

and x(t ; t0,φ) the solution of (4.32) with initial condition φ at time t0.

Conversely, if the pair (µ̂, v̂) is a solution of (4.34), then (µ̂, φ̂) is a solution of (4.33),
where for every n = −nh + 1, . . . , 0,

φ̂(t) = µ̂ b n−1
N cp̂(n−1) mod N +1

( t
∆
− (n − 1)

)
, t ∈ ((n − 1)∆, n∆],

and p̂(s) = (p̂T
1(s) · · · p̂T

N (s))T satis�es

p̂(s) = Rp(1 − s), (4.35)

with p solution of initial value problem (4.31) forv = Rv̂ and µ = µ̂.

Proof. Let Ñ(µ) = RŇ(µ)R and ṽ = Rv . In these variables, using substitution (4.35)
and taking into account RR = INr , nonlinear eigenvalue problem (4.30)–(4.31) can be
rewritten as

Ñ(µ)ṽ = 0, (4.36)

where
Ñ(µ)ṽ = p̃(1) − (

RB(µ)TR)
ṽ,

and {
9p̃(s) = (RA(1 − s, µ)TR) p̃(s), s ∈ [0, 1],
p̃(0) = ṽ .

We have
RB(µ)TR = B(µ),
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while the r × r block of RA(1− s, µ)TR at position (rn, rm) for n,m = 1, . . . ,N is equal
to r × r block of A(1 − s, µ)T at position (r (N −m + 1), r (N − n + 1)), whose explicit
formulation is given by

∆
∑

j=0, ...,h
bN−m+1−nj =N−n+1

Aj ((1 − s + N −m + 1 − 1)∆)TµaN−m+1−nj . (4.37)

To conclude the proof, we have to prove that (4.37) is equal to

∆
∑

j=0, ...,h
bn−nj =m

Aj
(−(s + n − 1)∆ + nj∆

)T
µan−nj , (4.38)

so that, by a comparison of this expression with (4.4), the nonlinear eigenvalue
problem (4.36) is equivalent to eigenvalue problem (4.33) in the sense of Theorem 4.2.
Let us note that bN−m+1−nj = N − n + 1 is equivalent to bn−nj =m, since by modular
arithmetic we get

N −m − nj ≡N N − n ⇔ m + nj ≡N n ⇔ n − nj ≡N m,

where ≡N denotes the congruence modulo N . Moreover, by the last congruence
relation, we obtain

n − nj =m + Nan−nj , with an−nj =
⌊
n − nj − 1

N

⌋
.

Therefore, by the periodicity T = N∆ of the system matrices {Aj (t)}hj=0 we get

Aj ((1−s+N−m+1−1)∆)T = Aj ((1−s−n+nj+N (1+an−nj ))∆)T = Aj ((1−s−n+nj )∆)T,

and also

aN−m+1−nj =
⌊
N −m − nj

N

⌋
=

⌊
N − n + Nan−nj

N

⌋
= an−nj .

Consequently, (4.37) is equivalent to (4.38), which concludes the proof. �

Based on Theorems 4.4-4.5 the methods for computing right eigenpairs as presented
in the previous section can be trivially adapted to compute left eigenpairs.

Remark 4.3. The linear time-periodic system (4.1) admits a dual system, although
relations (4.2) might be not satis�ed. Indeed, even if Assumption 4.1 does not hold,
the monodromy operators U , and Ǔ associated respectively with the linear periodic
time-delay systems (4.1) and (4.32) satisfy σ (U ) \ {0} = σ (Ǔ ) \ {0}, as stated in [56,
Theorem 1].
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4.4 Stability optimization

In this section, analogously to section 1.1.4, we assume that the matrices in (4.1)
depend on system or controller parameters K = (K1 · · · Kk )T ∈ Rk . More precisely,
we consider system

9x(t) =
h∑
j=0

Aj (t ; K)x(t − τj ), (4.39)

assuming that functions Aj : R×Rk 7→ Rr×r , (t,K) 7→ Aj (t ; K) are continuous andT -
periodic in the �rst argument, for j = 0, . . . ,h. Accordingly, di�erential equation (4.3)
changes to

9q(s) = A(s, µ; K) q(s),
and we denote the nonlinear eigenvalue problem by N(µ; K)v = 0. However, to
simplify the notations, we omit the parametric argument whenever it is not essential
for the understanding.

Section 4.4.1 addresses the characterization of derivatives of simple Floquet multipliers
with respect to parameters K, inferred from nonlinear eigenvalue problem (4.11), and
outlines their computation. These results are at the basis of a method for stability
optimization of periodic time-delay systems, presented in section 4.4.2.

4.4.1 Derivatives of Floquet multipliers

The following proposition provides an explicit expression for derivatives of a Floquet
multiplier with respect to system parameters.

Proposition 4.6 Let (µ,v) be an eigenpair of (4.11), with µ , 0 a simple eigenvalue.
Let u be the left eigenvector associated with µ, i.e. u∗N(µ; K) = 0. If q satis�es (4.9),
then, for each i ∈ {1, . . . ,k} we can express

∂µ

∂Ki
= −

u∗qKi (1)
u∗qµ (1) −u∗vN

, (4.40)

where qµ and qKi are solution of initial value problem



9qKi (s) =

∂A(s ,µ ;K)
∂Ki

q(s) +A(s, µ; K)qKi (s),
9qµ (s) = ∂A(s ,µ ;K)

∂µ q(s) +A(s, µ; K)qµ (s),
qKi (0) = 0, qµ (0) = 0,

andvN is as in Proposition 4.3.
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Proof. Applying Proposition 1.4 to the �nite-dimensional nonlinear eigenvalue
problem (4.11), the formula for a derivative of a simple eigenvalue is

∂µ

∂Ki
= −

u∗ ∂N(µ ;K)
∂Ki

v

u∗ ∂N(µ ;K)
∂µ v

. (4.41)

The remainder of the proof is analogous to the proof of Proposition 4.3, relying on the
variational equations corresponding to (4.9) and parameters µ andKi , respectively. �

Proposition 4.6 bring us to the following algorithm for computing the gradient of a
simple Floquet multiplier with respect to parameters vector K.
Algorithm 4.2. Computing the gradient of a Floquet multiplier.

1. Compute a Floquet multiplier µ and its right eigenvectorv by Algorithm 4.1.
2. Compute u ∈ CNr as the corresponding left eigenvector.
3. Solve initial value problem




9q(s) = A(s, µ; K)q(s),
9qµ (s) = ∂A(s ,µ ;K)

∂µ q(s) +A(s, µ; K)qµ (s),
9qKi (s) =

∂A(s ,µ ;K)
∂Ki

q(s) +A(s, µ; K)qKi (s), i = 1, . . . ,k

q(0) = v, qµ (0) = 0, qKi (0) = 0, i = 1, . . . ,k,

(4.42)

on the interval [0, 1] and compute, by formula (4.40), the partial derivatives of
the Floquet multiplier with respect to the elements of K.

If the dimension Nr is small, the vector u can be computed as singular vector
corresponding to the smallest singular value of the matrix Nδ , obtained by solving
initial value problem (4.9) with Nr independent initial vectorsv . For problems with
high dimension Nr , the construction of the full matrix Nδ for the second step of
Algorithm 4.2 has to be avoided. In this situation, we can separately apply Arnoldi’s
method and, possibly, Broyden’s correction initialized with H0 = I , as discussed in the
previous section 4.2.3, to the original system (4.1) and to (4.32), followed by a pairing
of Floquet multipliers and associated eigenvectors.
Remark 4.4. In our implementation, we use the same integration method with �xed
step δ for numerically solving (4.31) and (4.42) as we use for (4.9). In particular, if the
left eigenvector is computed as left singular vector of Nδ , we solve (4.9) and (4.42) by
either Runge-Kutta of order 4 for non-sti� problems or trapezoidal rule for sti�
problems. If the left eigenvector is computed from the discretized monodromy
operator of system (4.32), followed by corrections using (4.30), then the initial value
problems (4.9), (4.31), and (4.42) are all solved by trapezoidal rule, a symmetric mixed
implicit-explicit scheme. The consistency between integration schemes permits to
interpret the result of Algorithm 4.2 as the gradient of a eigenvalue of Nδ (µ; K)v = 0.
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4.4.2 Stability optimization

By Proposition 1.1, the stabilization problem of an unstable system of form (4.39)
corresponds to �nding controller parameters K such that the Floquet multipliers are
all con�ned to the open unit disc. This problem, as well as the problem of increasing
the decay rate of solutions of a stable system towards the zero equilibrium, lead
us to the optimization problem of minimizing the (squared) spectral radius of the
monodromy operator as a function of controller parameters K,

min
K

ρ2, with ρ = |µD |; (4.43)

where µD is a dominant Floquet multiplier, in the sense of being the largest in modulus.

The objective function (4.43) behaves similarly to the spectral abscissa, analyzed
in section 2.1. Indeed, the objective function (4.43) is in general non-convex (see
Figure 1.4b), and may not be everywhere di�erentiable, even not everywhere Lipschitz
continuous, although a simple Floquet multiplier locally de�nes a smooth function
of parameters K. The lack of smoothness is related to the occurrence of multiple
dominant Floquet multipliers, counted with multiplicity. In general, points of non-
di�erentiability occur on a set with measure zero in the parameter space, meaning that
the objective function is smooth almost everywhere. For these reasons, analogously to
section 1.1.4, we use the MATLAB code HANSO (Hybrid Algorithm for Non-Smooth
Optimization) [64]. The underlying algorithm only requires the evaluation of the
objective function and its gradient with respect to the parameters, whenever it is
di�erentiable. This is the case if the dominant Floquet multiplier is isolated and simple,
and the objective function gradient is

∇K
(
ρ2) = 2 Re (µ̄D∇KµD) ,

where ∇KµD is obtained by Algorithm 4.2.

The accuracy of the results depends on the resolution of solving initial value
problems (4.9), and (4.42). To avoid �uctuations of the objective function and
convergence problems, we consider a discretized-�rst approach analogously to
Algorithm 3.1. Indeed, we have always used the same step-size δ for the initial value
problems (4.9), and (4.42), and kept it �xed during the optimization process. When
using the time-integration schemes described in Remark 4.4, the overall method can be
interpreted as stability optimization of discretized eigenvalue problemNδ (µ; K)v = 0.

4.5 Numerical examples

In this section, the novel stability optimization method for periodic time-delay systems
is tested on three test-cases. Section 4.5.1 considers a periodic scalar time-delay system,
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where the delays are multiple of the period. For this simple system, the numerical
results are compared with their analytical values. In section 4.5.2, proportional,
derivative, and integral controllers are designed by the novel stabilization method
for the Mathieu’s equation with delayed input. Section 4.5.3 considers a large scale
milling model, describing the interaction between a rotating cutter and a visco-elastic
workpiece by a periodic cutting force.

All numerical experiments are performed in Matlab version 9.1.0 (R2016b) on a Dell
Latitude notebook running an Intel(R) Core(TM) i5-6440HQ CPU @ 2.60GHz quad
core processor with 8 GB RAM. Our experiments can be reproduced with the publicly
available code of [25].

4.5.1 Stability and stabilization of a scalar system

For scalar systems of the form (4.12), the nonlinear eigenvalue problem can be
explicitly expressed by (4.14). This explicit expression permits to compute the
derivative of a simple Floquet multiplier with respect to an element Ki of K by (4.41),

∂µ

∂Ki
=

∑h
j=0 µ

1−j ∂aj
∂Ki

1 +
∑h

j=1 jµ
−jaj
, for i = 1, . . . ,k . (4.44)

As a �rst example, we test the proposed methods on a scalar system with N = 1, so
that the results can be compared with the explicit expressions (4.14) and (4.44). We
consider the following system

9x(t) = (K cos(2t))x(t) + (sin(2t) + K)x(t − π ) + 0.1 cos(2t)esin(2t )x(t − 2π ). (4.45)

The Floquet multipliers and their derivatives with respect to controller parameter K
can be obtained by (4.14) and (4.44), with a0 = a2 = 0 and a1 = Kπ ,

µk =

{
Kπ

Wk (Kπ ) , if K , 0,
1, if K = 0,

∂µ

∂K
=

{
π

1+Wk (Kπ ) , if K , 0,
π , if K = 0,

(4.46)

where we remind from Example 1.3 thatWk denotes the k-th branch of the Lambert
W function.

For K = e/π , the largest Floquet multiplier in modulus is simple, µ = e, and its
derivative satis�es ∂µ

∂K =
π
2 . Analogously to Figure 1.3, the approximation errors

of Algorithm 4.1 are illustrated in Figure 4.4. In particular, Figure 4.4a depicts the
relative error induced by the discretization of the monodromy operator (the �rst stage
of Algorithm 4.1), increasing the number of collocation points M , and illustrates the
expected spectral convergence. In Figure 4.4b, a few steps of Broyden’s method permit
to reach a tolerance error equal to machine precision, however the approximated
Floquet multipliers accuracy crucially relies on the step-size δ to solve (4.28).
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(b) Convergence for Broyden’s method.

Figure 4.4 Relative errors to evaluate the dominant Floquet multiplier with Algorithm 1.1 for
system (4.45) with K = e/π . Broyden’s method is initialized on the largest eigenvalues in modulus
of UM with M = 10 and M = 15 collocation points, and its accuracy relies on the step-size δ to
approximate the characteristic matrix N(µ) with Runge-Kutta method of order 4.
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Figure 4.5 Relative errors to compute the dominant Floquet multiplier and its derivative by
Algorithms 4.1-4.2. These errors are induced by approximatingN(µ) withNδ (µ), for system (4.45).

In contrast to Algorithm 1.1 for autonomous time-delay system, where the second
step approximates the characteristic roots up to machine precision by the explicit
characteristic matrix formulation, in the second step of Algorithm 4.1, the approx-
imated Floquet multiplier converges to an eigenvalue of Nδ (µ), since the solutions
of the initial value problem (4.9) are approximated by an integration method with
step-size δ . If δ is not su�ciently small, then Broyden’s method might even furnish
approximations which are less accurate than the ones obtained by the monodromy
operator discretization, considered for the initialization, see the errors for δ = 0.1 in
Figure 4.4b. The approximation with step-size δ of the characteristic matrix N(µ), i.e.
Nδ (µ), does not only a�ect the computation of the Floquet multiplier but also of its
derivative, as illustrated in Figure 4.5 where the initial value problems (4.9) and (4.42)
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are computed by Runge-Kutta method of order 4.

System (4.45) is unstable for K = e/π , since the dominant Floquet multiplier µ = e
does not lie within the unit circle. Computing the dominant Floquet multipliers by a
monodromy operator discretization with M = 15 collocation points and by Broyden’s
correction with 4-th order Runge-Kutta method and δ = 2 · 10−4 step-size, the stability
optimization approach of section 4.4.2 yields the stabilizing controller parameter
K = −0.1295, for which the spectral radius is ρ = 0.3935. Figure 4.6 displays the
iterates generated by the optimization routine. The �nal controller parameter found is
very close to the minimizer K = −(eπ )−1, for which the dominant Floquet multiplier
µ = e−1 corresponds to a double non-semi-simple eigenvalue. Finally, Figure 4.7 shows
the eigenvalues of (4.23) in the �rst and last iteration of the stability optimization
procedure.

1-1.27 -0.13 0

0.01

1

e

0.4

Controller parameter K

|µ |

Figure 4.6 The stability optimization path for system (4.45) is compared with the exact modulus
of the 10 largest Floquet multipliers, varying the controller parameter K . The stability optimization
provides a stabilizing controller already at the third iteration.
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(b) Stable spectrum K = −0.1295.

Figure 4.7 The Floquet multiplier approximations obtained as eigenvalues of (4.23) with M = 20
(circles) and their analytical value computed by (4.46) (dots) are shown at the beginning and at
the end of the stability optimization process.
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4.5.2 Delayed Mathieu’s equation

As second example, we consider a variant of Mathieu’s equation with delayed input
and PID controller,

:z(t) + (ν + ε cos 2t)z(t) = −u(t − τ ),
u(t) = KI

∫ t
0 z(θ )dθ + KPz(t) + KD 9z(t),

where KI, KP and KD are respectively integral (I), proportional (P) and derivative (D)
gain. The Mathieu’s equation with delayed PI and PD feedback controllers is analyzed
in [77], and arises as model for the stick balancing problem in [37, Section 5.4].

The Floquet multipliers of the Mathieu’s equation with delayed PID controller can be
inferred from the spectrum of the following linear periodic time-delay system

9x(t) = ©«
0 1 0
0 0 1
0 −ν − ε cos 2t 0

ª®¬
x(t) − ©«

0 0 0
0 0 0
KI KP KD

ª®¬
x(t − τ ). (4.47)

If KI = 0, Mathieu’s equation with PD feedback controller can be rewritten as a linear
periodic time-delay system of dimension r = 2, which presents the same spectrum of
system (4.47), except for a non-physical Floquet multiplier of (4.47) equal to one.

For ν = 4 and ε = 2 the system without controller is unstable. Therefore, we design
PI, PD, and PID controllers in the presence of input delay τ = 3π/4. In order to
minimize the dimension of the nonlinear eigenvalue problem we consider ∆ as the
greatest common divisor of τ and of the period T = π , so that ∆ = π/4 and N = 4.
Table 4.1 summarizes the results of the stability optimization, with M = 10 collocation
points and a Runge-Kutta method of order 4 with step-size δ = 2 · 10−3. As expected,
increasing the number of controller parameters results in smaller spectral radii.

Table 4.1 Results of the stability optimization algorithm for Mathieu’s equation with delayed
feedback controller (4.47), where ν = 4, ε = 2, τ = 3π/4. All the designed controllers stabilize the
system, since the spectral radii ρ are smaller than 1.

ρ KI KP KD

PI controller 0.5339 0.3215 0.7541
PD controller 0.2858 0.7012 0.0231
PID controller 0.2376 1.8035 1.1270 0.5313

The dimension of the characteristic matrix N(µ) and of the discretized eigenvalue
problem (4.23) are 12 × 12 and 132 × 132, respectively. In the stability optimization
we apply both the small and the large scale strategies for the computation of the
dominant Floquet multiplier and of its gradient. The small scale strategy solves
the discretized eigenvalue problem (4.23) by a direct method, initialize the Jacobian
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inverse in Broyden’s method with (4.27), and extracts the left eigenvector by explicitly
constructing the matrixNδ (µ). The large scale strategy applies Arnoldi’s method and
Broyden’s correction initialized with H0 = I to the original system (4.47) and to its
dual time-delay system. Both strategies lead to the same results given in Table 4.1;
however, their computation time di�ers, Table 4.2. The �ne discretization accuracy
of Runge-Kutta method, δ = 2 · 10−3, heavily a�ects the timings of the small scale
strategy, which requires to explicitly compute the characteristic matrixNδ (µ) both in
the initialization (4.27) of the Broyden’s method and in the left eigenvector extraction.

Table 4.2 Timings to evaluate the largest in modulus Floquet multiplier and the last iteration
of the of the stabilization method at the designed controllers for the delayed feedback Mathieu’s
equation (4.47) with ν = 4, ε = 2, and τ = 3π/4. The required time to design the di�erent controllers
with the novel stabilization method is also shown. The small scale strategy, explicitly computing
the characteristic matrix Nδ (µ) both in (4.27) and for the extraction of the left eigenvector, is
computationally slower than the large scale strategy, which computes the left eigenvector with the
dual time-delay system (4.32).

Timings [s] Eigenpairs Iteration Optimization
Strategy Small Large Small Large Small Large
PI controller 3.3689 0.7091 5.5439 1.3701 1734.7 424.3
PD controller 3.6210 0.8854 6.1812 2.0463 1286.8 492.3
PID controller 5.1067 0.9601 9.0045 2.6682 2398.4 1434.8

4.5.3 A PDE model for a milling problem in machining

The last numerical example considers a milling model, described in [71]. Some Floquet
multipliers of this system are computed by de�ated Broyden’s method in [39]. This
milling model describes the interaction between a rotating cutter and a visco-elastic
workpiece by a periodic cutting-force f . The rotating cutter is attached to a spring,
and modeled by

:z(t) + 2K 9z(t) + z(t) = −f (t),
where K is the damping parameter to be designed in order to improve the stability
properties of the overall system. The workpiece is modeled by Kelvin-Voigt material
leading to the following partial di�erential equation (PDE),




∂u(t ,`)
∂t 2 − ∂u(t ,`)

∂`2 − ∂u(t ,`)
∂`2∂t = 0, ` ∈ [0, 1],

u(t, 0) ≡ 0, ∂u(t ,1)
∂` +

∂u(t ,1)
∂t∂` = −f (t).

This PDE is discretized in space usingn linear �nite elements de�ned on an equidistant
grid. By applying Galerkin �nite element method, we get a system of ordinary
di�erential equations,

Pn :U (t) + DnU (t) + Dn 9U (t) = −f (t)en,
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where U (t) ∈ Rn and

Pn =
1

6n

©«

4 1

1
. . .

. . .

. . . 4 1
1 2

ª®®®®®¬
, Dn = n

©«

2 −1

−1
. . .

. . .

. . . 2 −1
−1 1

ª®®®®®¬
, en =

©«

0
...
0
1

ª®®®®¬
.

The periodic cutting-force couples the rotating cutter and workpiece dynamics, and
is in�uenced by the previous cut, occurring with delay τ = 1; it is modeled by

f (t) = д(t) (z(t) − z(t − τ )) + д(t) (u(t, 1) − u(t − τ , 1)) ,

where u(t, 1) is discretized by eT
nU (t), and д(t) is a function with period 1, de�ned on

the interval [0, 1] as

д(t) =
{

sin2(2πt) + 0.5 sin(4πt), t ∈ [0, 1/2],
0, t ∈ (1/2, 1]. (4.48)

Setting y(t) =
(
U T z 9U T

9z
)T

, we can rewrite the milling model as a periodic linear
time-delay system, whose dimension r = 2(n + 1) depends on the PDE discretization
based on n linear elements,

E 9x(t) = (A(K) − F · д(t))x(t) + F · д(t)x(t − τ ), (4.49)

where

E =
©«

In
1

Pn
1

ª®®®¬
, A(K) = −

©«

−In
−1

Dn Dn
1 2K

ª®®®¬
, F =

©«
ene

T
n en

eT
n 1

ª®®®¬
.

System (4.49) can be reformulated into (4.1) by pre-multiplication with matrix E−1.
However, as this reduces the sparsity of the matrices, we rely instead on a slight
extension of the presented results to periodic time-delay system with a constant
non-singular leading coe�cient matrix E, as described in the following section 4.6.1.

Let us consider a PDE discretization with n = 250, leading to a system dimension
r = 502. The largest Floquet multipliers in modulus are iteratively approximated by
the Arnoldi’s method, and their accuracy is then re�ned by Broyden’s method, as
explained in section 4.2.3. To compute a left eigenvector, appearing in the expression
for the Floquet multiplier derivative with respect to K , we separately apply Arnoldi’s
and Broyden’s methods to the model (4.49) and corresponding model (4.32), followed
by a pairing of Floquet multiplier approximations (see section 4.4.1). In order to
consistently solve the problem (see Remark 4.4), the initial value problems (4.9), (4.42),
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and (4.31) are solved by trapezoidal rule with step-size δ = 0.01. The usage of the
trapezoidal rule permits also to tackle the sti�ness to numerical solve the initial value
problems.

The milling model (4.49) is periodic with T = τ1 = 1. However, di�erently from
the previous examples, the periodic system matrices are not smooth, presenting
a non-di�erentiable point at t = 1/2 + kT for every integer k , due to (4.48).
Consequently, the solutions exhibit a discontinuity in the second derivative at these
time-instants. The presence of such a discontinuity decreases the discretization
accuracy by the collocation approach if it occurs in an interior point of the domain
of a polynomials (4.15), de�ning the spline approximation. This can be overcome by
taking ∆ = 1/2n with n ∈ N \ {0}, so the discontinuity is located at the endpoints of
the support of two M-degree polynomials.

For n1 = N = 2, the system (4.49) requires a high number of collocation points
M = 250, to reliably approximate the dominant Floquet multipliers by Arnoldi’s
method. Therefore, we increase the sparsity of the matrices Sq and Sφ used in the
Arnoldi’s iteration (4.29) by setting M = 20 and n1 = N = 26, which is bene�cial
in the employed sparse LU factorization of Sq . Indeed, the spline approximation
of the eigenfunction is achieved by 26 polynomials of degree M = 20, instead of 2
polynomials of degree 250. The resulting Sq and Sφ matrices in (4.29) present a block
diagonal structure where each of the 26 blocks has dimension 21r × 21r .

0 0.25 0.60 0.75 1

0.4
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0.7

0.91

Controller parameter K

|µ |

Figure 4.8 Modulus of the largest in modulus Floquet multipliers as a function of K for
system (4.49). The initial and �nal iterations of the optimization process are indicated by circles.

The stability optimization almost halves the modulus of the dominant Floquet
multiplier, from ρ = 0.9095 at initial gain K = 0 to ρ = 0.4799 for K = 0.5968.
The designed controller is close to a minimizer of the spectral radius, as illustrated in
Figure 4.8. The minimum is characterized by a real and a conjugate pair of Floquet
multipliers having the same modulus, Figure 4.8. The approximations of the largest
Floquet multipliers requires few Arnoldi’s iterations to converge, for example for
the �nal controller gain the residual norm of the approximated conjugate pair of
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Figure 4.9 Convergence history of the dominant Floquet multipliers for Arnoldi’s method applied
to UM for M = 20, N = 26, and K = 0.5968

Floquet multipliers reach machine precision within 35 iterations, compared to 55 for
the dominant real Floquet multiplier, see Figure 4.9b.

4.6 Further remarks

We further develop the arguments previously presented in this chapter with respect
to three di�erent research directions. Firstly, in section 4.6.1, we discuss the
generalization to linear periodic time-delay system with arbitrary non-singular
leading matrix. Then, we generalize the results to deal with the eigenvalues of the
solution operator. To conclude, we address for autonomous time-delay system with
commensurate delays the link between the nonlinear eigenvalue problems associated
with the in�nitesimal generator (Theorem 1.3) and to a particular monodromy operator
(Theorem 4.2).

4.6.1 Arbitrary non-singular leading matrix

Let us consider a linear-periodic time-delay system, satisfying Assumption 4.1, of the
form

E 9x(t) =
h∑
j=0

Aj (t ; K)x(t − τj ), (4.50)

where E is a non-singular Rr×r -valued matrix. We brie�y discuss the generalization
of the previous results to system (4.50), without (explicitly) using the inverse of the
leading matrix E. This generalization is considered in the numerical example of
section 4.5.3 to preserve the sparsity patterns of the system matrices.
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The characteristic matrix N(µ; K) associated with (4.50) is de�ned by its action on
v ∈ CNr as N(µ; K)v = q(1) − B(µ)v , with q solution of the initial value problem{

(E ⊗ IN ) 9q(s) = A(s, µ; K)q(s), s ∈ [0, 1],
q(0) = v .

Its “transposed” problem (4.31) changes to Ň(µ)v = (ET ⊗ IN )p(0) − B(µ)Tv , where p
satis�es {

(ET ⊗ IN ) 9p(s) = −A(s, µ; K)Tp(s), s ∈ [0, 1],
(ET ⊗ IN )p(1) = v .

Moreover, the dual time-delay system associated with (4.50) is

ET
9x(t) =

h∑
j=0

Aj (−t + τj ; K)Tx(t − τj ).

Indeed, Theorem 4.5 can be generalized to time-delay system with non-singular
leading matrix E, where condition (4.35) changes to

p̂(s) = R
(
ET ⊗ IN

)
p(s) =

©«
ET

. .
.

ET

ª®®¬
p(s).

4.6.2 Characteristic matrix for the solution operator

The Floquet multipliers are eigenvalues of the monodromy operator U , which is
de�ned as the solution operator T(T , 0), where T > 0 is the period of the system
matrices {Aj (t)}hj=0 of system (4.1). In this section, we extend the theory behind
Algorithms 4.1 and 4.2 dealing with Floquet multipliers, to the more general case of
the eigenvalues of the solution operator associated with a time-delay system

9x(t) =
h∑
j=0

Aj (t ; K)x(t − τj ), t ≥ t0 ∈ R, (4.51)

where the system matrices are not restricted to be time-periodic. System (4.51) admits
a unique forward solution of the initial value problem (1.2), then we can de�ne a
family of solution operators {T (t1, t0)}t0∈R

t1∈R+ . Analogously to Assumption 4.1, we
consider system (4.51) and its associated solution operators T(t1, t0), with t1 > 0 and
t0 ∈ R, such that the parameter t1 and the delays τj are commensurable, i.e. t1 = N∆,
and for every j ∈ {0, . . . ,h} τj = nj∆ with N , nj ∈ N and ∆ ∈ R+ \ {0}.
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Generalizing Theorem 4.2, the non-zero eigenvalues of the solution operator T(t1, t0),
i.e. µ ∈ C \ {0}, such that

T(t1, t0)φ = xt1+t0 (·; t0,φ) = µφ, φ ∈ X \ {0},

can be alternatively characterized as eigenvalues of the �nite-dimensional nonlinear
eigenvalue problem N(µ; K)v = 0 withv ∈ CNr \ {0}. The matrix-valued function
N(µ; K) is implicitly de�ned as solution of a boundary value problem (4.8)–(4.9),
where the di�erential equation (4.4) changes to

9qn(s) = ∆
h∑
j=0

Aj (t0 + (s + n − 1)∆; K)µan−nj qn−nj (s),

for s ∈ [0, 1] and n = 1, . . . ,N . A similar formulation can also be obtained for the
“transposed” problem (4.31).

Since the system matrices {Aj (t ; K)}hj=0 are not assumed to be time-periodic in the
t-variable, Theorem 4.5 cannot be easily generalized except when T = ∆, i.e. N = 1.
Indeed, the dual time-delay system for T(∆, t0) associated with (4.51) is

9x(t) =
h∑
j=0

Aj (t0 + ∆ − t ; K)Tx(t − τj ).

This last result generalizes the dual time-delay system (4.32) associated with (4.12),

9x(t) =
h∑
j=0

Aj (−t ; K)Tx(t − τj ).

Indeed, the monodromy operator associated with system (4.12) is U = T(∆, 0), and
the system matrices of (4.12) are T = ∆-periodic.

4.6.3 Characteristic matrices relations for autonomous time-delay system

Let us consider the following autonomous linear time-delay system

9x(t) =
h∑
j=0

Ajx(t − τj ), (4.52)

where the delays are commensurate, i.e. for any j ∈ {0, . . . ,h}, τj = nj∆ with nj ∈ N
and ∆ ∈ R+ \ {0}. Since system (4.52) is time-periodic for any period T > 0, then
every solution operator T(T , 0) is a monodromy operator associated with (4.52). For
simplicity, we consider U = T(∆, 0).
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By Theorem 4.2, the Floquet multipliers of the monodromy operator U associated
with (4.52) satisfy the nonlinear eigenvalue problem N(µ)v = 0 with v ∈ Cr . In this
case, the matrix N(µ) admits an explicit formulation, since the solution of the initial
value problem (4.13) is

q(s) = exp
(
s∆

h∑
j=0

Ajµ
−nj

)
v, s ∈ [0, 1].

Therefore, the nonlinear eigenvalue problem N(µ)v = 0 is
(
exp

(
∆

h∑
j=0

Ajµ
−nj

)
− µIr

)
v = 0.

By this explicit formulation, we can establish the connection between the characteristic
matrices associated with the in�nitesimal generator and to the monodromy operator,
respectively A(λ) and N(µ). Let λ ∈ C and v ∈ Cr \ {0}, then

A(λ)v = 0⇔
((

h∑
j=0

Aje−λτj
)
− λIr

)
v = 0

⇔ (λ,v) is an eigenpair of the matrix
(

h∑
j=0

Aje−λτj
)

⇔
(
eλ∆,v

)
is an eigenpair of the matrix exp

(
∆

h∑
j=0

Aje−λnj∆
)

⇔
(
exp

(
∆

h∑
j=0

Aje−λ∆nj
)
− eλ∆Ir

)
v = 0

⇔N
(
eλ∆

)
v = 0,

where the third equivalence follows from the spectral mapping theorem.

The relation between the nonlinear eigenvalue problems,A(λ)v = 0 andN(µ)v = 0, is
in agreement with the relation (1.9) between the spectra of the in�nitesimal generator
A and of the monodromy operator U = T(∆, 0). Moreover, the relation between the
eigenvalues of A(λ) and N(µ), can be also derived by (1.9) and Theorems 1.3 and 4.2,
which state the equivalence between the in�nite-dimensional linear eigenvalue
problems and their associated �nite-dimensional nonlinear eigenvalue problems.
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Summary. The Floquet multipliers of a periodic time-delay system, with
commensurable period and delays, are interpreted as eigenvalues of either the
monodromy operator or a �nite-dimensional characteristic matrix. This dual
interpretation is computationally exploited: the characteristic matrix formulation
permits to improve the accuracy of Floquet multiplier estimates, obtained by
discretizing the monodromy operator. In addition, the derivatives of the Floquet
multipliers are explicitly expressed in terms of the characteristic matrix and left
and right eigenpairs. The formula for the derivative is used in a novel stabilization
method, which is also applicable to large scale system, since the characteristic matrix
left eigenpairs are related to the characteristic matrix right eigenpairs of a dual periodic
time-delay system.
Extended research results of chapter 4 are presented in section 5.1.3.





5
Conclusions

This last chapter summarizes the original contributions of this thesis on spectrum-based stability
assessment and stabilization of linear time-delay systems. Based upon these results, further
research directions are suggested.

In this dissertation, we have proposed novel numerical methods, advancing the
classical spectrum-based stability assessment and stabilization of time-delay systems,
brie�y reviewed in chapter 1. In particular, we have developed in chapter 3 a
stabilization method for time-delay systems, which takes into account uncertainty,
modeled by the realizations of a random vector, a�ecting delays and other system
parameters. Moreover, in chapter 4, we have presented a novel spectrum-based
stability assessment and stabilization methods for a class of periodic system, whose
monodromy operator can be associated with a characteristic matrix, evaluated by
solving an initial value problem. The development of these methods relies on the
analysis of the smoothness properties considered in chapter 2.

This chapter is organized as follows. Firstly, section 5.1 brie�y reviews the main
contributions of each chapter. Then, in section 5.2, we outline possible future research
directions.

5.1 Research results

We present a chapter by chapter summary of the main original contributions.

5.1.1 Chapter 2: Smoothness properties of the stability measure

Chapter 2, other than explaining the parallelism between polynomial approximation
and polynomial chaos theory, analyzes the approximation of polynomial series (2.3) of
α(ω) (and its polynomial chaos expansion (2.7) of α(ω)) with respect to the behavior
of spectral abscissa function (2.2). The analyses show that the lack of smoothness
properties of the spectral abscissa function heavily a�ects the approximation errors
of the Galerkin and collocation approaches, as well as the numerical errors in the
approximation of the polynomial coe�cients ci with integration methods.
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The convergence rates of the Galerkin and collocation approaches are comparable,
whenever numerical errors in the Galerkin approach are negligible. These errors can
be neglected by following the advices given at the end of section 2.3.1, which correlate
the polynomial degree of αMP with the number of points M + 1 of the integration
methods. In this way, the quality of the Galerkin approach approximation is not
a�ected by the numerical errors of the integration methods.

The test-examples, Examples 2.1–2.3 and 2.5, reveal that if the spectral abscissa
behaves smoothly, then the polynomial approximation convergences with spectral
accuracy for both approaches, i.e. with a convergence rate faster than O

(
P−kd

)
for

any k ∈ N, where Pd = P for the univariate case D = 1. However, if the spectral
abscissa is non-di�erentiable and even non-Lipschitz continuous, then the orders of
convergence in the univariate case are respectively O (

P−1) and O (
P−0.5) , while in

the bivariate case they converge approximately as O
(
P−1
d

)
and O

(
P−0.3
d

)
, respectively.

These latter cases are not deeply studied in the literature on the spectral abscissa
approximation, even though they easily occur when applying stability optimization
methods, as presented in chapter 3.

Chapter 2 reviews the main theorems on univariate and bivariate polynomial
approximation on Chebyshev and Legendre bases for di�erentiable functions, and
provides convergence rates for real-valued non-di�erentiable and non-Lipschitz
continuous functions. Exploiting the parallelism, the L∞ error bounds are considered
in the polynomial chaos framework, providing a novelty in this context. Indeed, the
results in polynomial chaos theory are commonly stated in terms of the L2 norm, or
equivalently, in terms of the second order moment, a weaker measure than the L∞

norm.

5.1.2 Chapter 3: Probabilistic stability optimization

We have presented a novel stability optimization method for uncertain linear
interconnected time-delay systems, modeled by delay di�erential algebraic equations
of retarded type where some coe�cients are determined by the realizations of a
random vector. The novel approach presents several advantages. First, the system
description (3.1) allows to model a wide class of interconnected systems, without
any restriction on the number of constant and distributed delays, with the possibility
to design static and dynamic feedback controllers. Second, all coe�cients of the
time-delay system, including the delays, can be a�ected by uncertainty, i.e., they
can be described by random variables with a given probability density function.
Third, the solutions are more robust and reliable for realistic applications compared
to the associated deterministic design. As shown in the engineering models in
sections 3.3.4 and 3.3.5, small perturbations on some parameters, may render stable
solutions in the deterministic setting unstable. On the other hand, the solutions can be
stabilized and robusti�ed also in these latter cases by the novel probabilistic approach.
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Fourth, the novel approach permits to obtain di�erent dynamics of stable and robust
systems varying the parameter κ of the objective function (3.6) and order rc of the
controller, as presented in the mechanical system with active vibration absorber in
section 3.3.5. In this way, the user, regarding his/her application, may choose the
controller based on the di�erent time-evolution behaviors and robustness property of
the resulting system.

The presented approach is complementary to the approaches grounded in the
pseudospectral abscissa optimization, see the numerical comparison in section 3.3.3.
First, while the former adopts a probabilistic setting in describing the uncertainty
and in the robust stability criterion, the latter takes a worst-case setting, using only
upper bounds on the uncertainty. Second, in the pseudospectral setting, typically
matrix-valued perturbations are considered, hence, many parameters are subject to
uncertainty. Very e�cient algorithms to compute the pseudospectral abscissa are
available, but it remains di�cult to consider a given structure of the uncertainty, in
particular if the characteristic matrix nonlinearly depends on the uncertain parameters.
In applications, this issue, combined with the worst-case treatment, may lead to an
over bounding on the actual uncertainty and a safe but conservative design. On the
contrary, with the adopted approach, the parametric dependence and structure of
the uncertainty can be easily taken into account, but from a computational view,
only a small number of uncertain parameters can be considered, following from the
multivariate integrals involving eigenvalue functions that are not always smooth.
This is the currently main limitation of the approach. It should be said, however, that
the overall approach concerns an o�-line controller design.

5.1.3 Chapter 4: Stability and stabilization for a class of periodic delay
system

Central in chapter 4 is the dual interpretation of Floquet multipliers as solutions of
either an operator eigenvalue problem or a �nite-dimensional nonlinear eigenvalue
problem. The related one-to-one mapping can not only be expressed in terms of right
eigenpairs (Theorem 4.2), but also in terms of left eigenpairs (Theorem 4.5), where
surprisingly the time-shifts in (4.32) depend on the delays. The dual interpretation
is computationally exploited, as the nonlinear eigenvalue problem formulation
lays at the basis of local corrections to improve the accuracy of (multiple) Floquet
multiplier estimates obtained by discretizing the monodromy operator. This results
in a robust method for accurately computing dominant Floquet multipliers. In
addition, computationally tractable expressions for derivatives can be obtained from
the nonlinear eigenvalue problem formulation that are useful in the context of stability
optimization. The derived results are also generalized to deal with periodic time-delay
systems with a non-singular leading matrix, and to compute the eigenvalues of the
solution operator if the integration time is di�erent from T or if the matrices are not
periodically varying.
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Finally, Assumption 4.1 describes the most general situation where Floquet multipliers
can be related to a boundary value problem in terms of an ordinary di�erential
equation. If the assumption is not satis�ed (or if the minimum N would be
prohibitively large), one can still do the stability analysis and stabilization on the
(parametrized) matrix UM , discretizing the monodromy operator by the collocation
approach.

5.2 Future perspectives

The results presented in this thesis disclose possible future research directions.
Some possible topics concern the analysis of neutral time-delay system, described
in section 5.2.1, the extensions of the probabilistic stability optimization method,
presented in section 5.2.2, and the development of an heuristic method to determine
the number of collocation points to accurately approximate the dominant Floquet
multiplier, explained in section 5.2.3. Moreover, other than the previously mentioned
future perspectives, it would be desirable to validate the developed numerical methods
against experimental results, in order to boost their usage in various applications of
time-delay systems.

5.2.1 Neutral time-delay systems

The analysis conducted in chapters 2 and 3 for autonomous linear time-delay systems
of retarded type, can be extended to general eigenvalue problems presenting a �nite
number of dominant eigenvalues in the uncertain domain Ω. However, this property
does not hold in general for the spectrum associated with an autonomous neutral
time-delay system. The evolution of these neutral systems not only depends on the
solution in the past, as the retarded delay di�erential equations (1.4), but also on
the derivative of the solution at past time-instants. An important issue in extending
the aforementioned analysis to neutral time-delay system concerns the possible
non-continuity of the spectral abscissa, which might not be a continuous function
of the delay parameters, as shown in [51, Example 1]. Since the spectral abscissa
is not continuous, stable neutral time-delay systems might become unstable with
in�nitesimal changes of parameters.

When there is only one delay or when delays are not a�ected by uncertainty, the
spectral abscissa is continuous. Still, the spectrum associated with a neutral time-delay
system can present an in�nite number of eigenvalues in a given right half-plane;
therefore, the spectral abscissa might correspond to the supremum of the rightmost
eigenvalues real parts, which is not a maximum. For example, the neutral time-delay
system

9x(t) + 9x(t − 1) = −2x(t) − x(t − 1), (5.1)
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which can be rewritten as a delay di�erential algebraic equation of neutral type(
1 0
1 0

)
9z(t) =

(−2 0
0 1

)
z(t) −

(
1 1
0 0

)
z(t − 1),

has all the eigenvalues in the open left half-plane, however the spectral abscissa,
de�ned by the supremum, is zero; this spectrum, analyzed in [95], is illustrated in
Figure 5.1. Therefore, for neutral systems, the spectral abscissa may not be described
by the rightmost eigenvalues behavior, like in section 2.1; and branches of in�nitely
many rightmost eigenvalues might cross each other in the complex plane.

-0.1 -0.05

-100

100

Re(λ)

Im(λ)

Figure 5.1 Spectrum of the neutral autonomous time-delay system (5.1). In this case, the spectral
abscissa corresponds to the supremum of the eigenvalue real parts, and not to the maximum.

For neutral time-delay system, a more robust concept of stability is often considered,
the so-called strong stability, such that in�nitesimal changes of parameters do not
a�ect the stability assessment [59, Section 1.2]. Analogously to Proposition 1.2 for
time-delay systems of retarded type, the strong stability of a neutral time-delay
systems can be inferred from a stability measure, known as robust spectral abscissa,
which behaves continuously with respect to in�nitesimal changes of parameters.
Therefore, we could generalize the probabilistic stability optimization method to
neutral time-delay systems, if we extend the theoretical background, developed in
chapter 3, and the Algorithm 3.1, to deal with the robust spectral abscissa.

5.2.2 Extension of the probabilistic stability optimization

In the light of the discussion in section 5.1.2, further investigations are focusing on
the re�nement of the novel approach to larger scale problems with higher stochastic
dimension. In particular, to tackle the large system dimension, projection methods
are currently considered and analyzed, since they reduce the system dimension,
preserving the spectral abscissa behaviors, as brie�y presented in section 2.5.

In addition, the developed software [21] could be extended to consider periodic time-
delay systems, uncertainty modeled by a general random vector, and further statistical
moments in the objective function. Even though these extensions are trivial from
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a theoretical point of view, they can be useful in applications. In what follows, we
further describe these possible software developments.

Periodic time-delay systems. The extension to periodic time-delay system would
generalize the spectrum-based stability assessment and stabilization methods
developed in chapter 4 to deal with system a�ected by uncertainties, modeled
by the realizations of a random vector. To consider the uncertainties of the periodic
time-delay system, the objective function of the stabilization methods should be
de�ned by a linear combination of statistical moments of the squared spectral radius.

General random variables as uncertainty. In chapter 3, the random vector ω, whose
realizations a�ect the time-delay system (3.1), is assumed to be continuous with
support the D-dimensional unit cube, Ω = [0, 1]D . However, we could extend the
approach to discrete, continuous, or mixed random vector ω, if there exist numerical
methods to randomly sample from ω accordingly to the probability density function
w. Indeed, if it is possible to obtain the random realization from the general random
vector ω, then we could approximate the objective function and its gradient by
Monte Carlo integration method [29, Chapter 6].

Further statistical moments in the objective function. In the probabilistic stability op-
timization method, we tune parameters in order to shape the probability density
function of the spectral abscissa by considering only mean and variance in the
objective function (3.6). However, if the stabilization method considers further
statistical moments, appropriately weighted, then we could drive the probability
density function of the spectral abscissa to have determined features. For example,
considering the third and fourth statistical moments, i.e. the skewness and kurtosis,
as in [61], we could force the spectral abscissa probability function to be symmetric,
skewed to the left, or to rarely have realizations far away from the mean. This
generalization requires small additional e�ort compared to the mean-variance
minimization, since the major computational cost to approximate the statistical
moments relies on the computation of the spectral abscissa and its gradient for
every realization of the uncertainty {ξm}Mm=1 ⊂ Ω.

5.2.3 Reliable computation of the dominant Floquet multipliers

The eigenvalue problem for the discretized monodromy operator UM can also be
obtained from a spectral discretization of boundary value problem (4.3). In this latter
view, the dependence of matrix A(s, µ) on µ in the ordinary di�erential equations is in
terms of negative integer powers, suggesting a smoothing e�ect for the solution, if the
Floquet multipliers are large in modulus. Further research can try to clarify whether
this implies that for su�ciently large M , outside a given circle in the complex plane,
the number of Floquet multipliers match the number of eigenvalues of UM . Indeed, as
observed in following numerical example, the negative powers of µ in A(s, µ) seem to
be related with the approximation accuracy of the Floquet multipliers by eigenvalues
of UM .
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Example 5.1. Let us consider the scalar system (4.45) with K = −0.1295. If M = 20,
the eigenvalues of UM accurately approximate the Floquet multipliers outside a circle
of radius 0.15 as illustrated in Figure 5.2a. Squaring the number of collocation points
M = 400, the Floquet multipliers approximations are accurate outside a circle of
radius 0.07, which is approximately half of the initial radius, as shown in Figure 5.2b.
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(a) System (4.45), M = 20.
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(b) System (4.45), M = 400.
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(c) System (5.2), M = 20.
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(d) System (5.2), M = 40.

Figure 5.2 The Floquet multiplier approximations obtained as eigenvalues of UM (circles) and
their analytical value computed by (4.46) (dots). Within the dashed circles, the Floquet multipliers
are not approximated by the eigenvalues of the discretized monodromy operator UM .

The scalar system, obtained from (4.45) neglecting the x(t − 2π ) term,

9x(t) = (K cos(2t))x(t) + (sin(2t) + K)x(t − π ), with K = −0.1295, (5.2)

admits the same Floquet multipliers of (4.45), but the matrix A(s, µ) in the boundary
value problem (4.3) depends on µ only by its inverse, µ−1, and does not present
anymore the term µ−2. In this case, if we double the number of collocation points,
from M = 20 to M = 40, the radius of the circle, out of which the Floquet multipliers
are accurately approximated by the eigenvalues of UM , is halved, from 0.12 to 0.06 as
illustrated in the Figures 5.2c and 5.2d.

This investigation could form a theoretical foundation of a heuristic method to
robustly determine the number of collocation points M , such that the dominant
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Floquet multipliers are accurately approximated by the eigenvalues of UM . Moreover,
this heuristic method could also permit to locate the rightmost characteristic roots for
autonomous time-delay systems, by the relation between the characteristic matrices
described in section 4.6.3.
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